期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
不均衡小样本下多特征优化选择的生命体触电故障识别方法 被引量:5
1
作者 高伟 饶俊民 +1 位作者 全圣鑫 郭谋发 《电工技术学报》 EI CSCD 北大核心 2024年第7期2060-2071,共12页
针对现有的剩余电流保护装置无法有效识别触电事故的问题,该文提出了一种不均衡小样本下多特征优化选择的生命体触电故障识别方法。首先通过变分自编码器(VAE)对实验收集到的生命体触电小样本数据进行增殖以实现正负样本均衡;然后在时... 针对现有的剩余电流保护装置无法有效识别触电事故的问题,该文提出了一种不均衡小样本下多特征优化选择的生命体触电故障识别方法。首先通过变分自编码器(VAE)对实验收集到的生命体触电小样本数据进行增殖以实现正负样本均衡;然后在时域上提取能够反映波形动态变化特性的23个特征量,并利用高斯核Fisher判别分析(GKFDA)与最大信息系数(MIC)法从中选择最优表达特征组;最后,提出基于遗忘因子的在线顺序极限学习机(FOS-ELM)算法实现生命体触电行为的鉴别。实验结果表明,所提方法利用不均衡小样本触电数据集就可以训练出一个优秀的分类模型,诊断准确率可达98.75%,诊断时间仅为1.33 ms。其优良的性能结合在线增量式学习分类器设计,使得模型具备新知识学习能力,具有极好的工程应用前景。 展开更多
关键词 剩余电流保护装置 生命体触电故障 多特征优化选择 基于遗忘因子的在线顺序 极限学习机(FOS-ELM) 不均衡小样本
在线阅读 下载PDF
DCGAN结合CNN诊断不均衡小样本的滚动轴承故障 被引量:9
2
作者 施杰 胡益嘉 +2 位作者 王森 张溟晨 张毅杰 《噪声与振动控制》 CSCD 北大核心 2022年第6期130-136,142,共8页
针对滚动轴承故障样本过少且故障类间样本不均衡所导致诊断效果不佳的问题,提出一种将深度卷积生成对抗网络(Deep Convolution Generative Adversarial Network,DCGAN)与以遗传算法(Genetic Algorithm,GA)优化卷积神经网络(Convolution ... 针对滚动轴承故障样本过少且故障类间样本不均衡所导致诊断效果不佳的问题,提出一种将深度卷积生成对抗网络(Deep Convolution Generative Adversarial Network,DCGAN)与以遗传算法(Genetic Algorithm,GA)优化卷积神经网络(Convolution Neural Network,CNN)相结合的智能诊断方法。首先,利用GA以最小信息熵作为目标函数解决变分模态分解(variational Mode Decomposition,VMD)中本征模态函数分解个数和二次惩罚因子难以确定的问题。再根据平均峭度指标对分解后的信号进行重构,并将其转换为二维时频信号。然后,将小批量时频信号样本作为训练集放入构建的DCGAN模型中,对抗生成辅助故障样本。其次,通过GA寻优CNN中学习率和批处理大小的最优组合,实现对CNN的优化(Convolution Neural Network Optimized by Genetic Algorithm,GA-CNN)。再将对抗后的样本放到优化后的GA-CNN模型中进行训练,构造出适应于小故障样本及故障类间样本不均衡条件下的机械故障智能诊断模型。最后,采用西储大学和XJTU-SY轴承振动数据对该诊断方法进行测试。测试结果表明,该方法的诊断正确率达到95.22%,模型具有较好的泛化能力和鲁棒性。 展开更多
关键词 故障诊断 不均衡小样本 深度卷积生成对抗网络 卷积神经网络 变分模态分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部