期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
楔形和弧形结构入水冲击响应研究 被引量:13
1
作者 张岳青 白治宁 +1 位作者 曾小凡 周景军 《船舶力学》 EI CSCD 北大核心 2020年第3期400-408,共9页
结构物在入水过程中会受到较大的冲击载荷,严重影响结构、结构内部器件和人员的安全,因此入水问题的研究在船舶和航空航天等领域具有重要意义。本文以楔形体和弧形体为研究对象,自行设计试验系统进行了垂直入水的冲击试验,采用高速摄像... 结构物在入水过程中会受到较大的冲击载荷,严重影响结构、结构内部器件和人员的安全,因此入水问题的研究在船舶和航空航天等领域具有重要意义。本文以楔形体和弧形体为研究对象,自行设计试验系统进行了垂直入水的冲击试验,采用高速摄像机拍摄了结构入水冲击的动态过程,测量了结构在入水过程中冲击加速度和压力响应。采用ALE方法对试验工况进行了数值仿真,并对试验结果和仿真结果进行了对比分析。研究了不同形状、刚度、速度和质量等情况下,结构入水冲击加速度和不同位置处压力响应的变化趋势和影响程度。研究结果可以为入水结构的外形设计和承载能力设计提供技术支撑。 展开更多
关键词 不同结构物 入水冲击 加速度 压力
在线阅读 下载PDF
A robust multi-objective and multi-physics optimization of multi-physics behavior of microstructure
2
作者 Hamda Chagraoui Mohamed Soula Mohamed Guedri 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3225-3238,共14页
A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust c... A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust collaborative (IMORCO). In this work, the proposed IMORCO approach combined the IMOCO method, the worst possible point (WPP) constraint cuts and the Genetic algorithm NSGA-II type as an optimizer in order to solve the robust optimization problem of multi-physics of microstructures with uncertainties. The optimization problem is hierarchically decomposed into two levels: a microstructure level, and a disciplines levels, For validation purposes, two examples were selected: a numerical example, and an engineering example of capacitive micro machined ultrasonic transducers (CMUT) type. The obtained results are compared with those obtained from robust non-distributed and distributed optimization approach, non-distributed multi-objective robust optimization (NDMORO) and multi-objective collaborative robust optimization (McRO), respectively. Results obtained from the application of the IMOCO approach to an optimization problem of a CMUT cell have reduced the CPU time by 44% ensuring a Pareto front close to the reference non-distributed multi-objective optimization (NDMO) approach (mahalanobis distance, D2M =0.9503 and overall spread, So=0.2309). In addition, the consideration of robustness in IMORCO approach applied to a CMUT cell of optimization problem under interval uncertainty has reduced the CPU time by 23% keeping a robust Pareto front overlaps with that obtained by the robust NDMORO approach (D2M =10.3869 and So=0.0537). 展开更多
关键词 multi-physics multi-objective optimization robust optimization collaborative optimization non-distributed anddistributed optimization uncertainty interval
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部