期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度残差神经网络的无线电引信多调制类型时域混叠信号识别方法
被引量:
1
1
作者
常仁
朱玉鹏
+1 位作者
周辉
刘金生
《探测与控制学报》
CSCD
北大核心
2024年第6期37-45,共9页
针对多方向不同弹药来袭场景下产生的多调制类型时域混叠无线电引信信号识别问题,提出一种基于深度残差神经网络的时域混叠引信信号自动识别方法,实现低信噪比下多调制类型引信时域混叠信号的精确识别。采用DnCNN编码解码结构对时频域...
针对多方向不同弹药来袭场景下产生的多调制类型时域混叠无线电引信信号识别问题,提出一种基于深度残差神经网络的时域混叠引信信号自动识别方法,实现低信噪比下多调制类型引信时域混叠信号的精确识别。采用DnCNN编码解码结构对时频域混沌信号进行降噪,为低信噪比下多标签信号有效识别奠定基础;对于可匹配目标信号,建立多调制类型引信时域混叠信号多标签分类模型,构建基于深度残差神经网络的引信多调制类型时域混叠信号识别模型;对于不匹配目标信号,建立增量式小样本学习方法,在不影响原有模型参数条件下,通过增加额外的增量学习结构,实现对新出现的不匹配引信信号的增量学习与在线识别。仿真结果表明,该方法能够在低信噪比下实现不同调制类型引信时域混叠信号的精确识别,-10 dB信噪比下平均识别率可达90%。
展开更多
关键词
无线电引信
多调制类型时域混叠
信号
深度残差神经网络
不匹配目标信号
在线阅读
下载PDF
职称材料
题名
基于深度残差神经网络的无线电引信多调制类型时域混叠信号识别方法
被引量:
1
1
作者
常仁
朱玉鹏
周辉
刘金生
机构
中国人民解放军军事科学院系统工程研究院
出处
《探测与控制学报》
CSCD
北大核心
2024年第6期37-45,共9页
基金
国防预先研究项目(315095201)。
文摘
针对多方向不同弹药来袭场景下产生的多调制类型时域混叠无线电引信信号识别问题,提出一种基于深度残差神经网络的时域混叠引信信号自动识别方法,实现低信噪比下多调制类型引信时域混叠信号的精确识别。采用DnCNN编码解码结构对时频域混沌信号进行降噪,为低信噪比下多标签信号有效识别奠定基础;对于可匹配目标信号,建立多调制类型引信时域混叠信号多标签分类模型,构建基于深度残差神经网络的引信多调制类型时域混叠信号识别模型;对于不匹配目标信号,建立增量式小样本学习方法,在不影响原有模型参数条件下,通过增加额外的增量学习结构,实现对新出现的不匹配引信信号的增量学习与在线识别。仿真结果表明,该方法能够在低信噪比下实现不同调制类型引信时域混叠信号的精确识别,-10 dB信噪比下平均识别率可达90%。
关键词
无线电引信
多调制类型时域混叠
信号
深度残差神经网络
不匹配目标信号
Keywords
radio fuze
multi modulation type time-domain aliasing signal
deep residual neural network
mismatched target signal
分类号
TJ434.1 [兵器科学与技术—火炮、自动武器与弹药工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度残差神经网络的无线电引信多调制类型时域混叠信号识别方法
常仁
朱玉鹏
周辉
刘金生
《探测与控制学报》
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部