期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于GA-RBF神经网络和sEMG的下肢动作识别方法研究 被引量:3
1
作者 张鹏 张峻霞 +1 位作者 刘瑞恒 Ahmed Mohamed Moneeb Elsabbagh 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第1期41-47,共7页
为了提高人体肌电信号对于下肢动作识别的准确率,提出一种基于遗传算法(GA)优化的径向基(RBF)神经网络分类模型。通过采集人体日常8种下肢动作的表面肌电信号并选择“sym6”系小波函数对肌电信号进行滤波预处理,使用主成分分析法(PCA)... 为了提高人体肌电信号对于下肢动作识别的准确率,提出一种基于遗传算法(GA)优化的径向基(RBF)神经网络分类模型。通过采集人体日常8种下肢动作的表面肌电信号并选择“sym6”系小波函数对肌电信号进行滤波预处理,使用主成分分析法(PCA)对时频域特征降维,把特征向量输入GA算法优化的RBF神经网络进行训练和识别。实验结果表明,该方法对同一受试者8种下肢动作的平均识别率为94.00%±0.45%;对15位不同受试下肢动作识别率达到89.30%,比传统BP神经网络的识别准确率提高11.8%,预测时间缩短6 s。所提出的方法为肌电信号应用于下肢智能康复机器人的意图识别研究提供参考,有助于病人的康复。 展开更多
关键词 下肢表面肌电信号 小波变换 运动识别 RBF神经网络 主成分分析
在线阅读 下载PDF
sEMG多特征融合的自适应神经网络下肢运动意图识别研究 被引量:2
2
作者 刘瑞恒 张峻霞 钱芊橙 《现代电子技术》 2022年第7期33-40,共8页
针对表面肌电信号单一特征进行动作意图识别准确率低的问题,提出一种利用表面肌电信号多特征融合的动态自适应神经网络算法,实现8种下肢运动意图的准确识别。采集8种下肢动作的表面肌电信号,利用小波基函数对原始信号进行降噪处理,提取... 针对表面肌电信号单一特征进行动作意图识别准确率低的问题,提出一种利用表面肌电信号多特征融合的动态自适应神经网络算法,实现8种下肢运动意图的准确识别。采集8种下肢动作的表面肌电信号,利用小波基函数对原始信号进行降噪处理,提取时域、小波变换和样本熵的原始特征参数。对原始特征进行主成分分析,降低特征维度,使用改进的差分进化算法优化各个特征的权重值;针对传统BP神经网络梯度下降法收敛速度慢的问题,使用动态自适应学习率的神经网络算法代替传统BP神经网络识别方法,既提升了模型的收敛速度,又提高了运动意图识别的准确率。实验结果表明,采用多特征融合的自适应神经网络模型识别8种下肢运动意图,平均识别准确率达到94.89%,比单特征的BP神经网络方法识别准确率提高10%以上,动作的识别时间只需要280 ms。该方法在300 ms内可实现对下肢动作的识别,能够达到运动意图识别的要求。 展开更多
关键词 下肢运动意图识别 多特征融合 动态自适应神经网络 特征提取 下肢表面肌电信号 差分进化算法 小波分析 主成分分析
在线阅读 下载PDF
采用多核相关向量机的人体步态识别 被引量:8
3
作者 刘磊 杨鹏 刘作军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第3期562-571,共10页
为进一步提升人体步态识别的准确率,参考人体步态特点,选择下肢表面肌电信号(SEMG)、髋关节角度、膝关节角度作为步态识别信息源,提出一种基于多核相关向量机(MKRVM)的人体步态识别方法.该方法以多源信息特征值作为多核相关向量机的输入... 为进一步提升人体步态识别的准确率,参考人体步态特点,选择下肢表面肌电信号(SEMG)、髋关节角度、膝关节角度作为步态识别信息源,提出一种基于多核相关向量机(MKRVM)的人体步态识别方法.该方法以多源信息特征值作为多核相关向量机的输入,通过实验对不同信号选取合适的核函数,利用萤火虫优化(GSO)算法确定核函数参数,输出为不同步态的概率.利用训练好的模型直接对新样本进行分类,将概率最高的步态模式作为识别结果.实验结果表明,该方法对于平地行走、上楼、下楼、上坡、下坡等步态的平均识别率为94.64%,优于单核支持向量机(SVM)等方法. 展开更多
关键词 下肢表面肌电信号(SEMG) 关节角度 多核学习(MKL) 多核相关向量机(MKRVM) 步态识别 萤火虫优化(GSO)算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部