期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LightGBM的超大沉井下沉状态预测及传感器优化布置 被引量:6
1
作者 董学超 郭明伟 王水林 《岩土力学》 EI CAS CSCD 北大核心 2023年第6期1789-1799,共11页
沉井下沉状态预测及传感器优化布置有利于确保沉井安全平稳下沉、降低监测成本。基于机器学习中的LightGBM框架建立超大沉井下沉状态预测模型,利用沉井底部结构应力传感器监测数据,准确预测沉井下沉速度、横桥向高差和顺桥向高差,并通... 沉井下沉状态预测及传感器优化布置有利于确保沉井安全平稳下沉、降低监测成本。基于机器学习中的LightGBM框架建立超大沉井下沉状态预测模型,利用沉井底部结构应力传感器监测数据,准确预测沉井下沉速度、横桥向高差和顺桥向高差,并通过传感器重要程度分析,提出可满足下沉状态预测精度的传感器优化布置方案。将提出的沉井下沉状态预测模型和传感器优化布置方法应用于常泰长江大桥主塔超大沉井下沉工程,结果表明:沉井下沉预测时,3个预测指标的R2均大于0.94,下沉状态预测精度高;对下沉状态预测较为重要的传感器主要集中在沉井外圈和横纵轴线附近区域;在满足下沉状态预测精度的条件下,传感器优化布置方案可减少传感器数量达45.5%。优化布置方案包含的传感器数量相同时,提出的优化布置方案在下沉状态预测精度方面整体优于基于特征变量相关性分析的优化布置方案。 展开更多
关键词 超大沉井 下沉状态预测 传感器优化布置 LightGBM 机器学习 特征重要性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部