The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the ...The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.展开更多
In view of the reduction of hovering efficiency near high tension when a helicopter rotor hovers,a numerical simulation method of lifting rotor hovering aerodynamic characteristics based on leading edge droop is estab...In view of the reduction of hovering efficiency near high tension when a helicopter rotor hovers,a numerical simulation method of lifting rotor hovering aerodynamic characteristics based on leading edge droop is established in this paper. It is dominated by Reynolds average N-S equation in integral form. Firstly,VR-12 airfoil is taken as the research object,and the influence of leading edge droop angle on the aerodynamic characteristics of two-dimensional airfoil is studied. Secondly,the modified 7 A rotor is taken as the research object,and the effects of different leading edge droop angles at the position of blade r/R=0.75—1 on the aerodynamic characteristics in hover are explored. It is found that the leading edge droop can significantly improve the aerodynamic characteristics of two-dimensional airfoil and three-dimensional hovering rotor near high angle of attack,and can effectively inhibit the generation of stall vortex.展开更多
A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at...A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefbre, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.展开更多
文摘The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.
基金supported by the National Natural Science Foundation of China(No.11972190)the Aeronautical Science Foundation of China(No. 20185752)
文摘In view of the reduction of hovering efficiency near high tension when a helicopter rotor hovers,a numerical simulation method of lifting rotor hovering aerodynamic characteristics based on leading edge droop is established in this paper. It is dominated by Reynolds average N-S equation in integral form. Firstly,VR-12 airfoil is taken as the research object,and the influence of leading edge droop angle on the aerodynamic characteristics of two-dimensional airfoil is studied. Secondly,the modified 7 A rotor is taken as the research object,and the effects of different leading edge droop angles at the position of blade r/R=0.75—1 on the aerodynamic characteristics in hover are explored. It is found that the leading edge droop can significantly improve the aerodynamic characteristics of two-dimensional airfoil and three-dimensional hovering rotor near high angle of attack,and can effectively inhibit the generation of stall vortex.
基金the Marine Research Center of Amirkabir University of Technology for financial support of thi sresearch
文摘A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefbre, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.