期刊文献+
共找到736篇文章
< 1 2 37 >
每页显示 20 50 100
基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络 被引量:1
1
作者 陶永鹏 柏诗淇 周正文 《计算机应用》 北大核心 2025年第7期2378-2386,共9页
脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人... 脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人力资源。为了简化网络设计流程并自动获取最优的网络结构,提出一种基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络(NASCT-Net),以在构建用于多模态MRI脑肿瘤分割的网络架构的过程中,提高分割的精确度。首先,将神经架构搜索(NAS)技术应用于编码器的构建,形成可堆叠的NAS编解码模块,以自动优化适用于脑胶质瘤精准分割的网络架构;其次,在编码器底层集成基于Transformer的特征编码模块,以增强对肿瘤各组之间的相对位置和全局信息的表征能力;最后,通过构建体积加权Dice损失函数(VWDiceLoss),解决前景与背景的不平衡问题。在BraTS2019脑肿瘤数据集上与Swin-Unet等方法进行比较的实验结果表明,NASCT-Net的平均Dice相似系数(DSC)提高了0.009,同时平均Hausdorff距离(HD)降低了1.831 mm,验证了NASCT-Net在提高脑肿瘤多组织分割精度方面的有效性。 展开更多
关键词 网络架构 神经网络架构搜索 脑肿瘤分割 卷积神经网络 transformer
在线阅读 下载PDF
基于改进Transformer模型的Ad Hoc网络MAC协议识别技术
2
作者 何文雯 李盛祥 +3 位作者 王莉 李浩 李盈达 马鹏飞 《电讯技术》 北大核心 2025年第8期1240-1247,共8页
针对现有的媒体访问控制(Media Access Control,MAC)协议识别模型存在特征数据选取不完善和只关注局部特征的问题,首先,基于Transformer模型提出了Conv-Transformer模型。该模型将卷积操作引入到模型中,对卷积后特征图中的特征值进行分... 针对现有的媒体访问控制(Media Access Control,MAC)协议识别模型存在特征数据选取不完善和只关注局部特征的问题,首先,基于Transformer模型提出了Conv-Transformer模型。该模型将卷积操作引入到模型中,对卷积后特征图中的特征值进行分割拼接,并添加类别信息编码。其次,基于Exata平台搭建不同拓扑结构的Ad Hoc网络仿真场景,收集所有物理层的数据对Conv-Transformer模型进行训练和测试。测试结果表明,在Ad Hoc网络中对ALOHA、CSMA/CA、MACA和TDMA 4种MAC协议的识别任务上,提出的模型与经典深度学习模型递归神经网络(Recurrent Neural Network,RNN)、卷积神经网络(Convolutional Neural Network,CNN)和Transformer相比,比RNN模型的准确率提高了20.8%,比CNN模型的准确率提高了14.6%,比Transformer模型的准确率提高了68.8%。 展开更多
关键词 Ad Hoc网络 MAC协议识别 深度学习 transformer模型
在线阅读 下载PDF
新解码器的CNNs-Transformers融合网络及其病理图像肿瘤分割应用
3
作者 马丽晶 王朝立 +2 位作者 孙占全 程树群 王康 《小型微型计算机系统》 北大核心 2025年第6期1442-1449,共8页
病理图像是肿瘤诊断的"金标准",但超高分辨率的病理图像使得医生需要消耗大量的精力和时间,而且诊断结果主观性比较强.随着人工智能技术的发展,深度学习模型提供了计算机代替人对病理图像进行快速、准确和可靠诊断的可能性.然... 病理图像是肿瘤诊断的"金标准",但超高分辨率的病理图像使得医生需要消耗大量的精力和时间,而且诊断结果主观性比较强.随着人工智能技术的发展,深度学习模型提供了计算机代替人对病理图像进行快速、准确和可靠诊断的可能性.然而,目前大多数的网络更注重如何在编码器部分提取更准确的特征,而对于同等重要的解码器部分的结构设计研究则稍显不足.针对该问题,本文提出了由三类上采样模块组成的新网络,而编码器部分采用Swin Transformer和ConvNeXt作为网络的双分支并行独立结构.三类上采样模块分别是多重转置卷积采样、双线性上采样和Swin Transformer上采样,其特点是可以充分利用病理图像特征之间局部和全局的依赖关系.该网络分别在肝癌数据集和GLAS数据集上进行了验证,并与不同类型的主流网络进行了对比,性能指标皆达到比较好的结果. 展开更多
关键词 医学图像分割 深度学习 卷积神经网络 Swin transformer
在线阅读 下载PDF
一种交互连接CNN和Transformer的肠道息肉图像分类网络
4
作者 曹博 叶淑芳 +3 位作者 饶钰君 汤晓恒 何熊熊 李胜 《小型微型计算机系统》 北大核心 2025年第4期932-939,共8页
利用内镜图像对结直肠息肉进行风险分类至关重要,能够提高临床诊断准确性并降低结直肠癌死亡率.然而,目前基于卷积神经网络(CNN)或视觉Transformer(ViT)的分类方法不能很好地区分类内尺度大和类间相似性高的息肉图像,针对息肉风险的分... 利用内镜图像对结直肠息肉进行风险分类至关重要,能够提高临床诊断准确性并降低结直肠癌死亡率.然而,目前基于卷积神经网络(CNN)或视觉Transformer(ViT)的分类方法不能很好地区分类内尺度大和类间相似性高的息肉图像,针对息肉风险的分类任务亟需改善.CNN中的卷积算子擅长提取局部特征.ViT通过级联自注意力模块可以捕获长距离依赖关系和全局特征.本文提出一个交互连接模块,以交互式的方式将CNN和ViT相连接,以整合多尺度特征;所设计的交互混合模型,能最大限度地保留局部特征和全局表示,显著缓解息肉多分类的类内差异性大、类间相似性高的问题;在大规模自然图像数据集中进行预训练;通过微调模型结构,使用预训练的交互混合模型参数初始化主干网络,并迁移至结直肠息肉数据集中再次训练,实现息肉多分类.在结直肠息肉私有数据集和Kvasir公共数据集上评估所提出模型,实验结果显示总体分类准确率分别达到了85.83%和96.84%,优于本文比较的其他算法;且引入迁移学习可以在降低训练成本的同时提升交互混合模型的分类性能和泛化性,在有限的训练数据集下有助于提高临床诊断效率. 展开更多
关键词 卷积神经网络(CNN) 视觉transformer(ViT) 结直肠息肉分类 多尺度特征 迁移学习
在线阅读 下载PDF
嵌入导联上下文编码的图卷积神经网络心律失常分类模型
5
作者 喻云虎 杨湘 陈艳红 《计算机工程与应用》 北大核心 2025年第3期212-222,共11页
心律失常对患者健康造成严重威胁,其通过12导联心电图(electrocardiogram,ECG)的自动分类在临床上具有重要意义。现有研究偏重两两导联之间的相关性,忽视多导联上下文及频域特征,这导致了分析的局限性,且易受噪声干扰,影响分类准确性。... 心律失常对患者健康造成严重威胁,其通过12导联心电图(electrocardiogram,ECG)的自动分类在临床上具有重要意义。现有研究偏重两两导联之间的相关性,忽视多导联上下文及频域特征,这导致了分析的局限性,且易受噪声干扰,影响分类准确性。该研究提出了嵌入导联上下文编码的图卷积神经网络心律失常分类模型(lead con-text encoding embedded graph convolutional neural network model for arrhythmia classification,LCEE-GCN)。该模型利用短时傅里叶变换获取12导联心电信号的功率谱密度(power spectral density,PSD),并运用ECG信号处理算法提取R-R间期等时域特征,通过导联上下文编码获得导联间更广泛的相关性信息,并结合PSD与时域特征构建动态图结构,利用图卷积神经网络增强模型对导联间关系的学习与表示能力。在查普曼数据集上进行的实验表明,模型达到了99.38%的准确率,超过了现有先进方法。这一创新有望提高心律失常诊断的效率和准确性。 展开更多
关键词 心律失常分类 12导联心电图 图卷积神经网络 功率谱密度 导联上下文编码
在线阅读 下载PDF
融合Transformer网络与卷积神经网络的稳态运动视觉诱发电位解码方法
6
作者 张焕卿 谢俊 +3 位作者 杨瀚林 杜方钊 金志伟 陈昱洁 《西安交通大学学报》 北大核心 2025年第5期44-53,共10页
针对卷积神经网络(CNN)在感受野有限、缺乏对全局信息的有效感知,以及在处理短时稳态运动视觉诱发电位(SSMVEP)信号时分类效果欠佳的问题,提出了一种紧凑EEGNet-Transformer(即EEGNetformer)网络。EEGNetformer网络融合了为脑电(EEG)信... 针对卷积神经网络(CNN)在感受野有限、缺乏对全局信息的有效感知,以及在处理短时稳态运动视觉诱发电位(SSMVEP)信号时分类效果欠佳的问题,提出了一种紧凑EEGNet-Transformer(即EEGNetformer)网络。EEGNetformer网络融合了为脑电(EEG)信号识别任务而设计的通用的卷积神经网络EEGNet网络和Transformer网络的优势,有效地捕捉与处理脑电信号中的局部和全局信息,增强网络对SSMVEP特征的学习,进而实现良好的解码性能。EEGNet网络用于提取SSMVEP的局部时间和空间特征,而Transformer网络用于捕捉脑电时间序列的全局信息。在基于SSMVEP-BCI范式采集的数据基础上,开展了实验以评估EEGNetformer网络的性能。实验结果显示,当在2 s SSMVEP数据条件下,EEGNetformer网络在基于被试者内情况的平均准确率为88.9%±6.6%,在基于跨被试者情况的平均准确率为69.1%±4.3%。与传统的CNN算法相比,EEGNetformer网络的分类性能提升了4.2%~17.4%。研究内容说明,EEGNetformer网络在有效提高SSMVEP-BCI识别准确率方面具有显著优势,为进一步提升SSMVEP-BCI解码性能提供了新的研究思路。 展开更多
关键词 稳态运动视觉诱发电位 EEGNet网络 transformer网络 EEGNetformer网络
在线阅读 下载PDF
Transformer融合CNN-SRU的工业控制网络入侵检测方法 被引量:1
7
作者 史长鑫 宗学军 +2 位作者 何戡 连莲 孙逸菲 《重庆理工大学学报(自然科学)》 北大核心 2025年第3期85-92,共8页
针对工业控制网络入侵检测的现有方法只关注网络流量的局部特征或全局特征,以及网络流量数据分布不平衡导致入侵检测模型准确率低的问题,提出一种Transformer融合卷积神经网络-简单循环单元(CNN-SRU)的工业控制网络入侵检测方法。采用... 针对工业控制网络入侵检测的现有方法只关注网络流量的局部特征或全局特征,以及网络流量数据分布不平衡导致入侵检测模型准确率低的问题,提出一种Transformer融合卷积神经网络-简单循环单元(CNN-SRU)的工业控制网络入侵检测方法。采用自适应合成采样方法(ADASYN)和高斯混合模型(GMM)对少数类样本进行过采样,达到样本平衡。通过CNN-SRU捕获网络流量数据的时空局部特征,Transformer编码器部分捕捉全局联系进行深层次特征提取。在NSL_KDD数据集上进行实验,模型的总体准确率达到99.61%,高于对比的神经网络模型。在密西西比州立大学天然气管道控制系统数据集和本实验室油气集输全流程工业攻防靶场上进行实验,总体准确率分别达到98.58%和96.89%,证明了所提方法在工业控制网络入侵检测中的科学性与可行性。 展开更多
关键词 工业控制网络 入侵检测 transformer 卷积神经网络 简单循环单元
在线阅读 下载PDF
Transformer和生成对抗网络相结合的图像修复
8
作者 林旭 王永雄 +3 位作者 陈俊帆 张凌樾 谢鑫宇 朱珺怡 《控制工程》 北大核心 2025年第7期1311-1319,共9页
现有图像修复模型无法高质量地修复大面积缺损的图像。针对此问题,提出了一种Transformer和生成对抗网络相结合的图像修复模型。首先,设计了一种新型掩码自适应输入模块,用于从输入图像中提取未被掩码遮蔽的图像块;其次,利用Transforme... 现有图像修复模型无法高质量地修复大面积缺损的图像。针对此问题,提出了一种Transformer和生成对抗网络相结合的图像修复模型。首先,设计了一种新型掩码自适应输入模块,用于从输入图像中提取未被掩码遮蔽的图像块;其次,利用Transformer从有效图像块中提取全局上下文信息,增强模型对缺损区域的补全能力;再次,使用快速傅里叶卷积(fast Fourier convolution,FFC)模块增强模型的细节修复能力,并消除输出图像中的伪影;最后,利用判别器网络对抗训练以提升整体网络的性能。利用所提模型对Place2数据集进行图像修复,测试结果表明:当掩码比例为50%~60%时,修复结果的峰值信噪比达到了19.7482 dB,结构相似性(structural similarity,SSIM)达到了0.7147。 展开更多
关键词 深度学习 图像修复 transformer 生成对抗网络 快速傅里叶卷积
在线阅读 下载PDF
多尺度特征融合的双阶段Transformer去雨网络
9
作者 李世平 周冬明 《小型微型计算机系统》 北大核心 2025年第4期898-906,共9页
图像去雨研究旨在提升图像质量,强化视觉感知.现有去雨算法由于通常采用单阶段实现,在去除雨纹干扰的同时会造成无雨背景的信息缺失,导致无法兼顾去雨效果和图像清晰度.为此,本文提出了一种基于Transformer的多尺度、双阶段U型去雨网络... 图像去雨研究旨在提升图像质量,强化视觉感知.现有去雨算法由于通常采用单阶段实现,在去除雨纹干扰的同时会造成无雨背景的信息缺失,导致无法兼顾去雨效果和图像清晰度.为此,本文提出了一种基于Transformer的多尺度、双阶段U型去雨网络,将去雨任务通过两个分别侧重于雨纹提取和细节修复的子网络逐步完成.第1阶段,引入反投射技术提出了一种特征融合模块,通过迭代逐渐融合不同尺度下的特征信息以弥补U型结构造成的信息缺失.同时,基于Boosting算法提出了一种增强连接的特征提取模块,以增强细节特征,提高输出信噪比.第2阶段,提出了一种细节增强注意力模块对粗糙去雨图像进行细节修复以生成轮廓清晰的无雨图像.实验结果表明,本文提出的算法在合成和真实数据集上都取得了出色的去雨效果,在Rain100H、SPA-data等数据集上相比近期其他优秀去雨算法均有一定程度的指标提升. 展开更多
关键词 图像去雨 transformer 多阶段网络 多尺度特征融合
在线阅读 下载PDF
CNN与Transformer协同的多模态边缘检测网络
10
作者 李永辉 赵耀 +2 位作者 加小红 魏琛珍 常文文 《计算机工程与应用》 北大核心 2025年第14期195-205,共11页
边缘检测在计算机视觉任务中扮演至关重要的角色,然而,现有边缘检测算法主要依赖CNN作为编码器,导致其在精细度、准确性以及噪声处理等方面存在缺陷。为了解决这些问题,提出了一个CNN与Transformer协同的多模态边缘检测网络。设计了一... 边缘检测在计算机视觉任务中扮演至关重要的角色,然而,现有边缘检测算法主要依赖CNN作为编码器,导致其在精细度、准确性以及噪声处理等方面存在缺陷。为了解决这些问题,提出了一个CNN与Transformer协同的多模态边缘检测网络。设计了一个基于无参数注意力残差结构的高分辨率特征融合模块,保留图像的底层属性,增强全局特征表示;设计了一种包含多尺度混洗注意力模块的轻量化CNN层来完成梯度编码,捕捉图像的高频属性,利用Transformer架构实现特征编码,构建高层的全局依赖关系,通过融合高频属性和全局依赖关系重构特征表达,将CNN、Transformer以及高分辨率特征融合模块的多尺度特征进行逐层聚合解码,从而高精度定位图像边界。与主流算法相比,所提模型在BSDS500、NYUD-v2上均获得较优指标。 展开更多
关键词 边缘检测 卷积神经网络(CNN) transformer 多模态 深度学习
在线阅读 下载PDF
基于卷积神经网络和Transformer的电能质量扰动分类
11
作者 王高峰 张昊 +1 位作者 钱云 高蔓 《现代电子技术》 北大核心 2025年第16期113-122,共10页
随着新能源的大规模应用,电能质量扰动(PQDs)事件的概率显著增加,而这些扰动会给配电系统造成重大损失。因此,提出一种基于卷积神经网络(CNN)和Transformer的PQDs分类方法,即CTranCAM。该方法通过CNN的卷积操作自动提取PQDs信号时间序... 随着新能源的大规模应用,电能质量扰动(PQDs)事件的概率显著增加,而这些扰动会给配电系统造成重大损失。因此,提出一种基于卷积神经网络(CNN)和Transformer的PQDs分类方法,即CTranCAM。该方法通过CNN的卷积操作自动提取PQDs信号时间序列的局部特征,然后使用Transformer中的多头注意力机制对提取的特征进行全局和长期关系建模,以弥补CNN在处理全局信息方面的缺陷,最后通过全连接层输出识别结果。使用CTranCAM方法对25类合成PQDs数据进行仿真,结果表明,该方法的分类准确率在无噪声条件下为99.60%,在信噪比为30 dB、40 dB和50 dB时,准确率分别达到了99.20%、99.36%和99.40%,具有良好的抗噪性和泛化性能。另外,通过与其他方法的性能比较得出,所提方法在不同噪声环境下都具有较好的分类性能,是一种较优秀的PQDs分类方法。 展开更多
关键词 电能质量扰动 卷积神经网络 transformer模型 多头注意力机制 特征提取 分类性能
在线阅读 下载PDF
CoT-TransUNet:轻量化的上下文Transformer医学图像分割网络 被引量:17
12
作者 杨鹤 柏正尧 《计算机工程与应用》 CSCD 北大核心 2023年第3期218-225,共8页
针对以往医学图像分割网络中卷积的感受野太小以及Transformer的特征丢失问题,提出了一种端到端的轻量化上下文Transformer医学图像分割网络(lightweight context Transformer medical image segmentation network,CoT-TransUNet)。该... 针对以往医学图像分割网络中卷积的感受野太小以及Transformer的特征丢失问题,提出了一种端到端的轻量化上下文Transformer医学图像分割网络(lightweight context Transformer medical image segmentation network,CoT-TransUNet)。该网络由编码器、解码器以及跳跃连接三部分组成。对于输入图像,编码器使用CoTNetTransformer的混合模块,采用CoTNet作为特征提取器来生成特征图。Transformer块则把特征图编码为输入序列。解码器通过一个级联上采样器,将编码后的特征进行上采样。该上采样器级联了多个上采样块,每个上采样块都采用CARAFE上采样算子。通过跳跃连接实现编码器与解码器在不同分辨率上的特征聚合。CoT-TransUNet通过在特征提取阶段采用全局与局部上下文信息相结合的CoTNet;在上采样阶段采用具有更大感受野的CARAFE算子。实现了生成更好的输入特征图,以及基于内容的上采样,并保持轻量化。在多器官分割任务的实验中,CoTTransUNet取得了优于其他网络的性能。 展开更多
关键词 医学图像分割 上下文transformer网络 级联上采样器 轻量化
在线阅读 下载PDF
融合Transformer网络与维纳过程的贮备系统寿命预测
13
作者 任锦程 郑建飞 +2 位作者 胡昌华 董海迪 裴洪 《哈尔滨工程大学学报》 北大核心 2025年第5期955-966,共12页
针对备件存储失效下基于深度学习的贮备系统寿命预测模型的不确定性水平难以量化,并且基于随机过程的模型在处理复杂和海量数据时存在一定的局限性问题。本文提出一种融合Transformer网络与维纳过程的非线性退化贮备系统寿命预测方法。... 针对备件存储失效下基于深度学习的贮备系统寿命预测模型的不确定性水平难以量化,并且基于随机过程的模型在处理复杂和海量数据时存在一定的局限性问题。本文提出一种融合Transformer网络与维纳过程的非线性退化贮备系统寿命预测方法。采用SG滤波器和CEEMADN算法对历史数据进行预处理提取退化趋势;通过Transformer网络自适应估计非线性维纳过程的退化趋势函数;推导出在首达时间意义下贮备系统寿命概率密度函数的解析表达式,通过数值仿真验证了该方法的有效性,并成功应用于锂电池实例进行了准确的寿命预测。 展开更多
关键词 transformer网络 退化趋势函数 贮备系统 寿命预测 维纳过程 存储失效 自适应估计 CEEMDAN算法
在线阅读 下载PDF
基于Swin Transformer的生成对抗网络水下图像增强模型
14
作者 李慧 贾炳志 +4 位作者 王晨曦 董子宇 李纪龙 仲兆满 陈艳艳 《计算机应用》 北大核心 2025年第5期1439-1446,共8页
针对水下图像对比度低、噪声大和存在色彩偏差等问题,以生成对抗网络(GAN)为核心框架,提出一种基于Swin Transformer的生成对抗网络水下图像增强模型SwinGAN(GAN based on Swin Transformer)。首先,生成网络部分遵循编码器-瓶颈层-解码... 针对水下图像对比度低、噪声大和存在色彩偏差等问题,以生成对抗网络(GAN)为核心框架,提出一种基于Swin Transformer的生成对抗网络水下图像增强模型SwinGAN(GAN based on Swin Transformer)。首先,生成网络部分遵循编码器-瓶颈层-解码器的结构设计,在瓶颈层将输入的特征图分割成多个不重叠的局部窗口;其次,引入双路窗口多头自注意力机制(DWMSA),在加强捕获全局信息和长距离依赖关系的同时,增强局部注意力;最后,在解码器中将下采样后的特征图经过多个上采样窗口重新组合成原始尺寸的特征图,判别网络则采用马尔可夫判别器。实验结果表明,与URSCT-SESR模型相比,在UFO-120数据集上,SwinGAN的峰值信噪比(PSNR)提升了0.837 2 dB,结构相似度(SSIM)提高了0.003 6;在EUVP-515数据集上,SwinGAN的PSNR提升了0.843 9 dB,SSIM提高了0.005 1,水下图像质量评价指标(UIQM)增加了0.112 4,水下彩色图像质量评估指标(UCIQE)略有上升,增加了0.001 0。可见,SwinGAN的主观评价以及客观评价指标都表现出色,在改善水下图像的色彩偏差问题上取得了不错的效果。 展开更多
关键词 水下图像增强 Swin transformer 生成对抗网络 多头自注意力机制 马尔可夫判别器
在线阅读 下载PDF
融合动态图嵌入和Transformer自编码器的网络异常检测
15
作者 张安勤 丁志锋 《计算机工程》 北大核心 2025年第4期47-56,共10页
网络异常检测的目的在于及时识别并响应网络中的恶意活动和潜在威胁。大多数基于图嵌入的异常检测方法主要用于静态图,忽略了细粒度的时间信息,无法捕获动态网络行为的连续性,从而降低了网络异常检测性能。为了提高动态网络异常检测的... 网络异常检测的目的在于及时识别并响应网络中的恶意活动和潜在威胁。大多数基于图嵌入的异常检测方法主要用于静态图,忽略了细粒度的时间信息,无法捕获动态网络行为的连续性,从而降低了网络异常检测性能。为了提高动态网络异常检测的效率和准确性,提出一个融合动态图嵌入和Transformer自编码器的网络异常检测方法。该方法利用时间游走的图嵌入技术捕获网络拓扑结构和细粒度的时间信息,结合对比损失的Transformer自编码器来优化节点嵌入表示并捕获长期依赖和全局信息,增强了模型对动态网络的感知能力,能更好地捕捉动态网络中随时间变化的事件,识别网络中的恶意行为。在公开的网络安全领域数据集上进行的大量实验结果表明,该方法在LANL-2015数据集上的真阳率(TPR)为94.3%、假阳率(FPR)为5.7%、曲线下面积(AUC)为98.3%,在OpTC数据集上的TPR为99.9%、FPR为0.01%、AUC为99.9%,异常检测结果优于基准方法。上述结果说明了该方法可以有效地学习动态网络中的拓扑和长短期时间依赖信息,识别网络中的异常行为。 展开更多
关键词 动态图嵌入 transformer自编码器 网络异常检测 恶意行为 长短期时间依赖
在线阅读 下载PDF
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
16
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 transformer 注意力模块 梯度融合
在线阅读 下载PDF
多尺度特征提取的Transformer短期风电功率预测 被引量:2
17
作者 徐武 范鑫豪 +1 位作者 沈智方 刘洋 《太阳能学报》 北大核心 2025年第2期640-648,共9页
针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了... 针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了特征提取时维数不被破坏;其次,利用融合自注意力机制的长短期记忆网络挖掘气象条件与功率之间的全局依赖关系;最后,融合风电功率序列本身时序特征和气象条件依赖关系,实现短期风电功率预测。实例仿真结果表明,MTPNet模型预测精度得到提升;消融实验证明了模型各模块的可靠性和有效性,具有一定的实用价值。 展开更多
关键词 风电功率预测 transformer 注意力机制 特征提取 长短期记忆网络 维数不变嵌入层
在线阅读 下载PDF
基于Transformer的多尺度遥感语义分割网络 被引量:4
18
作者 邵凯 王明政 王光宇 《智能系统学报》 CSCD 北大核心 2024年第4期920-929,共10页
为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器... 为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器和解码器2个部分组成,编码器包含基于Transformer改进的视觉注意网络(visual attention network,VAN)主干和基于空洞空间金字塔池化(atrous spatial pyramid pooling, ASPP)结构改进的多尺度语义特征提取模块(multi-scale semantic feature extraction module, MSFEM)。解码器采用轻量级多层感知器(multi-layer perception,MLP)配合编码器设计,充分分析所提取的包含全局上下文信息和多尺度表示的语义特征。MSTNet在2个高分辨率遥感语义分割数据集ISPRS Potsdam和LoveDA上进行验证,平均交并比(mIoU)分别达到79.50%和54.12%,平均F1-score(m F1)分别达到87.46%和69.34%,实验结果验证了本文所提方法有效提升了遥感图像语义分割的效果。 展开更多
关键词 遥感图像 语义分割 卷积神经网络 transformer 全局上下文信息 多尺度感受野 编码器 解码器
在线阅读 下载PDF
基于融合卷积Transformer的航空发动机故障诊断 被引量:1
19
作者 赵洪利 杨佳强 《北京航空航天大学学报》 北大核心 2025年第4期1117-1126,共10页
航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊... 航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊断方法。利用自注意力机制提取有用特征,抑制冗余信息,并将最大池化层引入Transformer模型中,进一步降低模型内存消耗及参数量,缓解过拟合现象。采用基于GasTurb建模的涡扇发动机仿真数据集进行验证,结果与Transformer模型和反向传播(BP)神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等传统深度学习模型相比,准确率分别提高了6.552%和28.117%、13.189%、10.29%,证明了所提方法的有效性,可为航空发动机故障诊断提供一定的参考。 展开更多
关键词 航空发动机 故障诊断 自注意力机制 融合卷积transformer 深度神经网络
在线阅读 下载PDF
基于视觉Transformer多模型融合的风电机组异常状态监测
20
作者 向玲 高鑫 +3 位作者 姚青陶 苏浩 胡爱军 程砺锋 《太阳能学报》 北大核心 2025年第4期522-529,共8页
为实现风电机组的异常状态监测并用于其故障诊断和日常维护,提出一种新的监测方法,该方法基于视觉Transformer(ViT)模型与长短期记忆(LSTM)网络融合,能有效识别风电机组的运行状态。首先,利用箱线图法和Spearman相关性分析对原始SCADA... 为实现风电机组的异常状态监测并用于其故障诊断和日常维护,提出一种新的监测方法,该方法基于视觉Transformer(ViT)模型与长短期记忆(LSTM)网络融合,能有效识别风电机组的运行状态。首先,利用箱线图法和Spearman相关性分析对原始SCADA数据进行预处理,去除无效数据并选择输入参数。然后,构建融合LSTM的ViT预测模型,并引入统计学中KL散度作为检测指标,对目标参数预测值与真实值进行计算分析。最后采用核密度估计确定安全阈值,根据检测指标是否越过安全阈值来识别风电机组异常状态。通过将该模型应用于华北某风场进行实例分析,并与其他深度学习模型对比。结果表明:该方法相较于其他模型能更好识别出风电机组异常状态。 展开更多
关键词 风电机组 状态监测 长短期记忆网络 视觉transformer KL散度
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部