期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MMF-YOLO晶圆模具表面微缺陷检测算法
1
作者 冯金秋 燕芳 +1 位作者 杨阳 李海宇 《计算机工程与应用》 北大核心 2025年第15期132-143,共12页
针对晶圆模具表面微缺陷检测中面临的目标小、尺度变化大、背景复杂、检测精度较低等问题,提出了结合边缘信息聚焦和上下文信息融合扩散的微缺陷检测算法MMF-YOLO。使用边缘信息聚焦模块(edge information focusing module,EIFM)改进原... 针对晶圆模具表面微缺陷检测中面临的目标小、尺度变化大、背景复杂、检测精度较低等问题,提出了结合边缘信息聚焦和上下文信息融合扩散的微缺陷检测算法MMF-YOLO。使用边缘信息聚焦模块(edge information focusing module,EIFM)改进原网络中的C3k2,从多尺度边缘信息中选择与目标高度相关的关键特征。使用上下文信息融合扩散金字塔网络(context-fusion diffusion pyramid network,CFD-PN)结构,对颈部网络进行优化,通过提取各层次网络中特征在空间分辨率和语义信息上的不同表征,减少信息融合过程中特征的混淆和丢失。同时,引入ADown(adaptive down-sampling module)下采样模块,优化了卷积层中的参数数量和计算冗余,以减少模型的复杂度。使用特征尺度缩放检测头(feature scale-aware detection head,FSDH),通过使用共享卷积,减少网络储存开销。实验结果表明,MMF-YOLO算法相较于基线YOLOv11n,在晶圆模具表面微缺陷数据集上,mAP@0.5提升了6.93个百分点,更适用于晶圆模具表面微缺陷检测任务和嵌入式平台部署与推理。 展开更多
关键词 机器视觉 微缺陷检测 边缘信息增强 上下文融合扩散金字塔 YOLOv11
在线阅读 下载PDF
SwinEA:融合边缘感知的医学图像分割网络 被引量:3
2
作者 叶晋豫 李娇 +2 位作者 邓红霞 张瑞欣 李海芳 《计算机工程与设计》 北大核心 2024年第4期1149-1156,共8页
基于卷积神经网络的方法在医学图像分割任务中取得了显著成果,但该方法固有的归纳偏置使其不能很好地学习全局和长距离的语义信息交互,而Transformer的优势是关注全局信息,两者可以优势互补。因此提出一种针对分割边缘利用Swin Transfor... 基于卷积神经网络的方法在医学图像分割任务中取得了显著成果,但该方法固有的归纳偏置使其不能很好地学习全局和长距离的语义信息交互,而Transformer的优势是关注全局信息,两者可以优势互补。因此提出一种针对分割边缘利用Swin Transformer融合边缘感知的医学图像分割网络。设计基于上下文金字塔的边缘感知模块,用于融合全局的多尺度的上下文信息,针对边缘和角落等局部特征,利用浅层深度主干的特征产生丰富的边缘特征,因此提出的边缘感知模块可以尽可能多地产生边缘特征。在腹部多器官分割任务和心脏分割数据集的实验结果表明,该方法在各项指标中都有所提高。 展开更多
关键词 医学图像分割 移动窗口变形器 多头自注意力 边缘感知模块 上下文金字塔 多尺度特征 深度学习网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部