期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
面向城市复杂场景的多尺度监督融合变化检测
1
作者 潘建平 谢鹏 +2 位作者 郭志豪 林娜 张慧娟 《遥感信息》 CSCD 北大核心 2024年第4期23-32,共10页
城市复杂场景中,地物形状多样,光照和成像角度变化大会导致变化检测结果受到干扰。为解决这些问题,文章提出了一种双上下文多尺度监督融合的网络模型(dual context multi-scale supervised fusion network model,DCMSFNet)。首先,在编... 城市复杂场景中,地物形状多样,光照和成像角度变化大会导致变化检测结果受到干扰。为解决这些问题,文章提出了一种双上下文多尺度监督融合的网络模型(dual context multi-scale supervised fusion network model,DCMSFNet)。首先,在编码部分使用双上下文增强模块获得地物丰富的全局上下文信息。在解码部分,采用级联的方法组合特征,然后通过自适应注意力模块捕捉不同尺度的变化关系,设计多尺度监督融合模块,增强深度网络融合,获得具有更高辨别能力的变化区域特征,将不同层级的输出结果与主网络的重构变化图融合形成最终的变化检测结果。该模型在LEVIR-CD和SYSU-CD变化检测数据集取得了较好的结果,F1-score分别提高了1.58%和2.17%,可更加精确识别复杂场景的变化区域,进一步减少无关因素引起的误检和漏检,且对目标地物边缘的检测更加平滑。 展开更多
关键词 深度学习 变化检测 上下文增强 自适应注意力模块 多尺度监督融合
在线阅读 下载PDF
基于改进TransUNet的肺部图像分割
2
作者 石勇涛 邱康齐 +1 位作者 柳迪 杜威 《现代电子技术》 北大核心 2025年第15期27-36,共10页
语义分割作为肺部影像分析的关键步骤,其准确率直接关系进一步的图像分析和治疗决策。面对肺部器官不规则外形、模糊边界以及噪声等问题,传统分割方法存在边界分割精确度不高、易出现误差等问题。针对这些挑战,文中提出一种基于多尺度... 语义分割作为肺部影像分析的关键步骤,其准确率直接关系进一步的图像分析和治疗决策。面对肺部器官不规则外形、模糊边界以及噪声等问题,传统分割方法存在边界分割精确度不高、易出现误差等问题。针对这些挑战,文中提出一种基于多尺度边缘特征融合的神经网络(MSB-AffTransU2Net)用于肺部图像的分割。首先,替换了TransUNet中的编解码器,采用U2-Net的RSU模块来增强特征提取的性能;然后,使用注意力特征融合机制替换原本的Concat方法,以减少模型参数并且提升特征的融合效果;接着,加入了多尺度特征提取器以及边界引导的上下文聚合模块,以融合提取更加精确的肺部边缘特征;最后,为优化模型损失函数,采纳了Dice损失与交叉熵损失,创建了一个新颖的损失函数。在COVID-19 Radiography Database的COVID类数据集上验证了所提算法的有效性。实验结果证明,MSB-AffTransU2Net在COVID数据集上的前景交并比(pIoU)和平均准确率(mAcc)与TransUNet算法相比,分别提高了3.03%和0.72%,证明了所提算法的有效性。 展开更多
关键词 COVID-19 肺部图像分割 TransUNet 边缘特征 边界引导的上下文聚合模块 注意力特征融合
在线阅读 下载PDF
SMS和双向特征融合的自然背景柑橘黄龙病检测技术 被引量:3
3
作者 曾伟辉 陈亚飞 +2 位作者 胡根生 鲍文霞 梁栋 《农业机械学报》 EI CAS CSCD 北大核心 2022年第11期280-287,共8页
柑橘黄龙病严重影响柑橘的产量和品质。在自然背景下,柑橘叶片之间存在相互遮挡以及尺寸变化大的问题,使得遮挡及小尺寸的黄龙病叶片容易漏检,而且由于黄龙病叶片的颜色、纹理特征与柑橘其他病害十分相似,容易存在误检的问题,导致现有... 柑橘黄龙病严重影响柑橘的产量和品质。在自然背景下,柑橘叶片之间存在相互遮挡以及尺寸变化大的问题,使得遮挡及小尺寸的黄龙病叶片容易漏检,而且由于黄龙病叶片的颜色、纹理特征与柑橘其他病害十分相似,容易存在误检的问题,导致现有的算法对自然背景柑橘黄龙病检测的精度不高。本研究提出了一种结合剪切混合拼接(Shearing mixed splicing, SMS)增广算法和双向特征融合的自然背景柑橘黄龙病检测方法,该方法通过SMS、镜像翻转和旋转方法对训练集和验证集进行了增广,增加了训练集和验证集图像中背景目标的数量和多样性;为了自适应地改变柑橘黄龙病检测中的局部采样点,增大有效感受野,使用可变形卷积替换骨干网络后3个卷积层中所有的标准卷积;为了减小自然背景的影响,使用全局上下文模块对骨干网络后3个卷积层输出的特征图进行特征增强,来建立有效的长距离依赖,以便更好的学习到全局上下文信息;使用双向融合特征金字塔,改善浅层特征和深层特征的信息交流路径,用以降低因柑橘黄龙病叶片尺寸变化大导致的漏检,提高小尺寸的柑橘黄龙病叶片的检测精度。实验结果表明,本研究提出的方法用于自然背景柑橘黄龙病的检测,平均精度可达84.8%,性能优于SSD、RetinaNet、YOLO v3、YOLO v5s、Faster RCNN、Cascade RCNN等目标检测方法。 展开更多
关键词 柑橘 黄龙病检测 自然背景 全局上下文模块 可变形卷积 双向特征融合
在线阅读 下载PDF
基于MobileViT和多尺度特征聚合的遥感图像目标检测 被引量:1
4
作者 梁礼明 冯耀 +1 位作者 龙鹏威 李仁杰 《智能系统学报》 CSCD 北大核心 2024年第5期1168-1177,共10页
针对遥感图像目标检测存在复杂背景干扰、微小目标提取难和目标多尺度差异问题,提出一种基于MobileViT和多尺度特征聚合的遥感图像目标检测算法(FWM-YOLOv7t)。首先设计多尺度特征聚合模块,建立遥感目标上下文依赖关系,提升多尺度目标... 针对遥感图像目标检测存在复杂背景干扰、微小目标提取难和目标多尺度差异问题,提出一种基于MobileViT和多尺度特征聚合的遥感图像目标检测算法(FWM-YOLOv7t)。首先设计多尺度特征聚合模块,建立遥感目标上下文依赖关系,提升多尺度目标和小目标检测精度;然后利用MobileViT模块,融合卷积神经网络和视觉Transformer优点,有效编码局部和全局信息,抑制非目标噪声干扰;最后引入Wise-IoU损失函数,重点关注普通质量锚框,提高算法检测性能。在公共数据集RSOD和NWPU VHR-10上的实验结果表明,FWMYOLOv7t能够显著提升遥感图像目标检测的平均准确率。与其他目标检测算法相比,FWM-YOLOv7t对复杂背景目标、小目标和多尺度目标的检测更有效。 展开更多
关键词 深度学习 遥感图像 目标检测 YOLOv7-tiny MobileViT模块 多尺度特征融合 上下文信息 Wise-IoU
在线阅读 下载PDF
基于局部特征增强的视网膜血管分割
5
作者 王倩 辛月兰 《激光杂志》 CAS 北大核心 2024年第4期216-222,共7页
视网膜血管具有细小复杂的特点,在对其进行分割时,经常出现噪点、断裂和欠分割等问题。针对此现象,提出一种基于局部特征增强的轻量化网络LRU-Net,以捕获更多细小血管特征。首先,在通道注意力模块中加入特征提取模块,对输入特征进行二... 视网膜血管具有细小复杂的特点,在对其进行分割时,经常出现噪点、断裂和欠分割等问题。针对此现象,提出一种基于局部特征增强的轻量化网络LRU-Net,以捕获更多细小血管特征。首先,在通道注意力模块中加入特征提取模块,对输入特征进行二次特征提取,以得到更多的细节特征;其次,设计了一个特征融合模块,在解码器中能更有效地融合高级和低级特性,加强最终的特征表示;最后,设计了一个上下文聚合模块,提取最深层特征不同分辨率的多尺度信息,然后进行拼接,使进入上采样的输入特征更加细化。在FIVES和OCTA-500数据集上的实验结果表明,与基础网络U-Net相比,本文所提方法在做到轻量化的同时,视网膜血管分割的准确度也有了一定的提升,在两个数据集上分别达到了98.45%、97.05%。 展开更多
关键词 特征增强 特征融合模块 上下文聚合模块 视网膜血管分割
在线阅读 下载PDF
基于改进PV-RCNN的3D目标检测算法实验研究 被引量:4
6
作者 傅荟璇 刘凌风 王宇超 《实验技术与管理》 CAS 北大核心 2022年第2期23-28,共6页
3D目标检测结合了深度信息,能够提供目标的位置、方向和大小等空间场景信息,在自动驾驶和机器人领域发展迅速。针对PV-RCNN在3D目标检测时不能够充分适应不同的物体尺度、不同的点云密度、部分变形和杂波等问题,对3D目标检测的任务进行... 3D目标检测结合了深度信息,能够提供目标的位置、方向和大小等空间场景信息,在自动驾驶和机器人领域发展迅速。针对PV-RCNN在3D目标检测时不能够充分适应不同的物体尺度、不同的点云密度、部分变形和杂波等问题,对3D目标检测的任务进行实验研究。通过加入自适应可变形卷积、上下文融合模块和Gumbel Subset Sampling模块来训练层级特征,使得编码关键点自适应地朝着最具有判别和代表性的特征对齐,提高提案框回归精度。实验结果表明,改进后的PV-RCNN 3D目标检测精度得到了提升,尤其是在远距离物体识别和检测方面。 展开更多
关键词 3D检测 PV-RCNN 自适应可变形卷积 上下文融合模块
在线阅读 下载PDF
基于光场焦点堆栈的鲁棒深度估计 被引量:3
7
作者 吉新新 朴永日 +2 位作者 张淼 贾令尧 李培华 《计算机学报》 EI CAS CSCD 北大核心 2022年第6期1226-1240,共15页
传统的深度估计方法通常利用普通相机记录的二维图像进行单目或多目深度估计.因这种方式仅利用了光线的强度信息,忽略了它的方向信息,其深度估计的效果并不理想.相比之下,光场记录的信息不仅包含了光线的强度信息,还包含了方向信息.因此... 传统的深度估计方法通常利用普通相机记录的二维图像进行单目或多目深度估计.因这种方式仅利用了光线的强度信息,忽略了它的方向信息,其深度估计的效果并不理想.相比之下,光场记录的信息不仅包含了光线的强度信息,还包含了方向信息.因此,基于深度学习的光场深度估计方法越来越引起该领域研究人员的关注,现已成为深度估计方向的研究热点.然而,目前大部分的研究工作从极平面图像(EPI)或子孔径图像着手进行深度估计,而不能有效利用焦点堆栈含有的丰富深度信息.为此,本文提出了基于光场焦点堆栈的鲁棒深度估计方法.本文设计了一种上下文推理单元(CRU),它能够有效地挖掘焦点堆栈和RGB图像的内部空间相关性.同时,本文提出了注意力引导的跨模态融合模块(CMFA),对上下文推理单元提取的空间相关性信息进行有效融合.为了验证本方法的准确性,在DUT-LFDD和LFSD数据集上进行了广泛的验证.实验结果表明,本文方法的准确率相比现有的EPINet和PADMM分别提高了1.2%和2.25%.为进一步证明本方法的有效性,我们在现有公开的手机数据集上进行了反复的测试.可视化测试结果表明,本方法在普通消费级手机获取的图像上亦可取得满意的效果,能够适应现实应用场景. 展开更多
关键词 光场 焦点堆栈 上下文推理单元 注意力机制 跨模态融合模块
在线阅读 下载PDF
基于改进YOLOX-s的机场跑道冰雪状态感知 被引量:2
8
作者 邢志伟 阚犇 +2 位作者 刘子硕 李彪 罗谦 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第10期1292-1304,共13页
针对机场冰雪跑道安全性和适航性状态感知能力不足及跑道表面状况报告交互的新需求,提出一种面向多尺度特征融合的机场跑道冰雪状态感知模型.以YOLOX-s模型为基础,在主干特征提取网络中引入全局上下文模块,获取更丰富的浅层与深层特征;... 针对机场冰雪跑道安全性和适航性状态感知能力不足及跑道表面状况报告交互的新需求,提出一种面向多尺度特征融合的机场跑道冰雪状态感知模型.以YOLOX-s模型为基础,在主干特征提取网络中引入全局上下文模块,获取更丰富的浅层与深层特征;将颈部结构中路径聚合网络替换为双向特征金字塔,以提升特征融合能力;在加强特征提取网络尾部添加自适应空间特征融合结构,进一步增强特征融合效果;使用α-EIoU优化损失函数,提高模型收敛速度与精度.实验结果表明,改进后的YOLOX-s模型在跑道冰雪实验系统所得的冰雪污染物数据集上平均精度达到了91.53%,比原始的YOLOX-s模型提高了4.68%,能够为机场跑道除冰雪作业提供决策支持. 展开更多
关键词 跑道冰雪状态感知 YOLOX-s 全局上下文模块 双向特征金字塔网络 自适应空间特征融合结构 α-EIoU损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部