期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
基于多尺度上下文注意力U-SegNet的遥感目标检测
1
作者 陈瑞霞 张善文 吴青娥 《电讯技术》 北大核心 2025年第8期1187-1195,共9页
针对遥感目标图像多样、目标较小且与周围环境对比度差,导致现有目标检测方法复杂度高、检测效果差、泛化能力弱,以及经典U-Net和U-SegNet忽略了不同目标尺度特征感受野差异等问题,提出了一种基于多尺度上下文注意力U-SegNet(Multi-scal... 针对遥感目标图像多样、目标较小且与周围环境对比度差,导致现有目标检测方法复杂度高、检测效果差、泛化能力弱,以及经典U-Net和U-SegNet忽略了不同目标尺度特征感受野差异等问题,提出了一种基于多尺度上下文注意力U-SegNet(Multi-scale Context Attention U-SegNet,MSCAUSNet)的遥感目标检测新模型。该模型由U-SegNet、多尺度特征融合(Multi-scale Feature Fusion,MSFF)和多尺度上下文注意力(Multi-scale Context Attention,MSCA)模块组成,采用MSCA代替U-SegNet中的跳跃连接以融合目标低层特征与高层特征,并通过MSFF和MSCA模块充分捕获多尺度上下文特征,从而显著提升遥感多尺度目标检测性能。在遥感目标图像数据集上的实验结果表明,该模型能够有效检测不同尺度遥感目标,较经典U-Net和U-SegNet的检测精度分别提高了7.94%和5.09%。该模型为遥感目标检测和识别系统提供了技术支持。 展开更多
关键词 遥感多尺度目标检测 多尺度上下文注意力U-SegNet 多尺度上下文注意力 多尺度特征融合
在线阅读 下载PDF
融合全局上下文注意力的遥感图像检测方法
2
作者 廖欢 朱文球 +1 位作者 雷源毅 徐轲 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第2期278-283,共6页
针对遥感图像场景复杂、目标尺寸不一、且小尺寸目标过多导致的检测精度不佳和出现漏检等问题,提出了一种融合全局上下文注意力的目标检测算法。该算法提出一种全局上下文注意力机制和YOLOv5中C3结构融合的模块,以提升网络捕捉图像全局... 针对遥感图像场景复杂、目标尺寸不一、且小尺寸目标过多导致的检测精度不佳和出现漏检等问题,提出了一种融合全局上下文注意力的目标检测算法。该算法提出一种全局上下文注意力机制和YOLOv5中C3结构融合的模块,以提升网络捕捉图像全局特征的能力;通过Varifocal Loss损失函数来提升对密集、尺寸小的目标的检测性能;采用基于归一化的注意力模块,降低图像中不太显著的特征和权重,使网络能够达到更高的检测准确率;利用动态卷积学习各个维度的信息,让训练得到的模型在降低GFLOPs情况下,同时保持检测精度提升。在NWPU VHR-10数据集上实验结果mAP为96.0%、准确率为98.2%、召回率为94.9%,较原YOLOv5模型分别提升了1.8%、4.7%和2.2%,证明了所改进YOLOv5方法的有效性。 展开更多
关键词 YOLOv5 遥感图像 Varifocal Loss 全局上下文注意力机制 动态卷积
在线阅读 下载PDF
基于上下文注意力CNN的三维点云语义分割 被引量:12
3
作者 杨军 党吉圣 《通信学报》 EI CSCD 北大核心 2020年第7期195-203,共9页
针对三维点云语义分割中缺乏结合点云的上下文细粒度信息导致的欠分割问题,提出一种基于上下文注意力卷积神经网络的三维点云语义分割算法。首先,通过注意力编码机制挖掘点云的局部区域内细粒度特征;然后,通过上下文循环神经网络编码机... 针对三维点云语义分割中缺乏结合点云的上下文细粒度信息导致的欠分割问题,提出一种基于上下文注意力卷积神经网络的三维点云语义分割算法。首先,通过注意力编码机制挖掘点云的局部区域内细粒度特征;然后,通过上下文循环神经网络编码机制捕捉多尺度局部区域之间的上下文特征,且与细粒度局部特征相互补偿;最后,采用多头部机制增强网络的泛化能力。实验结果表明,所提算法在ShapeNet Parts、S3DIS和vKITTI标准数据集上的平均交并比分别为85.4%、56.7%和38.1%,分割性能良好,且具有较好的泛化能力。 展开更多
关键词 三维点云 语义分割 上下文注意力卷积层 卷积神经网络 深度学习
在线阅读 下载PDF
基于上下文注意力的室外点云语义分割方法 被引量:4
4
作者 苏鸣方 胡立坤 黄润辉 《计算机工程》 CAS CSCD 北大核心 2023年第3期248-256,共9页
基于直接点的语义分割方法能够避免因点云结构化处理所造成的信息损失,但未充分利用多尺度上下文特征,导致行人、自行车等小目标的分割精度降低。提出一种基于上下文注意力的点云语义分割方法,其由双向上下文注意力融合和上下文编码-通... 基于直接点的语义分割方法能够避免因点云结构化处理所造成的信息损失,但未充分利用多尺度上下文特征,导致行人、自行车等小目标的分割精度降低。提出一种基于上下文注意力的点云语义分割方法,其由双向上下文注意力融合和上下文编码-通道自注意力模块组成。通过前向注意力通道进行邻近尺度特征融合,从而获得更多的浅层细粒度信息,而反向注意力通道进一步融合高层语义信息,以增强模型的上下文感知能力。为捕获全局上下文信息,设计上下文编码-通道自注意力模块,通过对多尺度特征进行编码,并为特征通道分配不同的权重,使网络更关注特定的通道特征,以减少特征的冗余。在SemanticKITTI和Semantic3D大规模室外点云数据集上的实验结果表明,该方法的平均交并比分别为55.0%和76.4%,其中在SemanticKITTI数据集上,相比基准方法RandLA-Net的行人和自行车交并比分别提高3.0和6.9个百分点,能有效捕获多尺度上下文信息,提高小目标的分割精度。 展开更多
关键词 语义分割 上下文注意力 室外点云 多尺度特征 通道自注意力 点云小目标
在线阅读 下载PDF
结合上下文注意力的卷积自校正图像语义分割 被引量:3
5
作者 陈孝如 曾碧卿 《计算机工程与设计》 北大核心 2022年第2期525-533,共9页
针对现有图像语义分割中存在小目标对象分割精度不高等问题,提出一种结合上下文注意力的卷积自校正图像语义分割模型。使用上下文注意力机制挖掘局部区域内细粒度特征,结合上下文循环神经网络和残差学习充分挖掘图像的深层隐含语义特征... 针对现有图像语义分割中存在小目标对象分割精度不高等问题,提出一种结合上下文注意力的卷积自校正图像语义分割模型。使用上下文注意力机制挖掘局部区域内细粒度特征,结合上下文循环神经网络和残差学习充分挖掘图像的深层隐含语义特征;构建辅助分割模型,在给定图像和边界框注释的情况下生成每像素的标签分布,提出卷积自校正模型,实现分割模型的动态调整。基于3种数据集对所提模型的分割精度进行实验论证,实验结果表明,所提模型的分割精度与分割效果均明显高于其它模型,具有良好的泛化能力。 展开更多
关键词 上下文注意力 卷积自校正 图像语义分割 辅助分割模型 平均交并比 平均像素精度
在线阅读 下载PDF
双注意力随机选择全局上下文细粒度识别网络
6
作者 徐胜军 荆扬 +3 位作者 段中兴 李明海 李海涛 刘福友 《液晶与显示》 CAS CSCD 北大核心 2024年第4期506-521,共16页
针对细粒度图像识别任务中易忽视微小潜在性特征且外观差异细微等问题,提出一种基于双注意力随机选择全局上下文细粒度识别网络。首先,使用ConvNeXt作为主干网络,提出双注意力随机选择模块,对不同阶段提取到的特征进行通道随机选择和空... 针对细粒度图像识别任务中易忽视微小潜在性特征且外观差异细微等问题,提出一种基于双注意力随机选择全局上下文细粒度识别网络。首先,使用ConvNeXt作为主干网络,提出双注意力随机选择模块,对不同阶段提取到的特征进行通道随机选择和空间随机选择,使网络能够关注到其他潜在微小判别性特征;其次,利用全局上下文注意力模块将深层特征的语义信息融合到中间层,增强中间层定位微小特征的能力;最后,提出一种多分支损失,对中间层、深层和拼接层特征引入分类损失,结合不同分支提取到的特征,诱导网络获得多样性的判别特征。所提网络在Stanford-cars、CUB-200-2011、FGVC-Aircraft 3个公开细粒度数据集和真实场景下车型数据集VMRURS上分别达到了95.2%、92.1%、94.0%和97.0%的识别准确率,其性能相比其他对比方法有较大幅度提升。 展开更多
关键词 细粒度识别 ConvNeXt 注意力随机选择 全局上下文注意力 多分支损失
在线阅读 下载PDF
基于视觉关联与上下文双注意力的图像描述生成方法 被引量:15
7
作者 刘茂福 施琦 聂礼强 《软件学报》 EI CSCD 北大核心 2022年第9期3210-3222,共13页
图像描述生成有着重要的理论意义与应用价值,在计算机视觉与自然语言处理领域皆受到广泛关注.基于注意力机制的图像描述生成方法,在同一时刻融合当前词和视觉信息以生成目标词,忽略了视觉连贯性及上下文信息,导致生成描述与参考描述存... 图像描述生成有着重要的理论意义与应用价值,在计算机视觉与自然语言处理领域皆受到广泛关注.基于注意力机制的图像描述生成方法,在同一时刻融合当前词和视觉信息以生成目标词,忽略了视觉连贯性及上下文信息,导致生成描述与参考描述存在差异.针对这一问题,提出一种基于视觉关联与上下文双注意力机制的图像描述生成方法(visual relevance and context dual attention, VRCDA).视觉关联注意力在传统视觉注意力中增加前一时刻注意力向量以保证视觉连贯性,上下文注意力从全局上下文中获取更完整的语义信息,以充分利用上下文信息,进而指导生成最终的图像描述文本.在MSCOCO和Flickr30k两个标准数据集上进行了实验验证,结果表明所提出的VRCDA方法能够有效地生成图像语义描述,相比于主流的图像描述生成方法,在各项评价指标上均取得了较高的提升. 展开更多
关键词 图像描述生成 注意力机制 视觉关联注意力 上下文注意力
在线阅读 下载PDF
基于高斯偏置自注意力和交叉注意力的医学图像分割模型
8
作者 罗会兰 郭宇辰 《计算机科学》 CSCD 北大核心 2024年第S02期456-464,共9页
为解决医学图像分割中目标之间存在特征差异、不同切片图像中存在同一解剖结构的相似表征和器官与背景的区分度低造成冗余信息过多的问题,提出了一种基于高斯偏置自注意力和交叉注意力的网络模型(Gaussian bias and Contextual cross At... 为解决医学图像分割中目标之间存在特征差异、不同切片图像中存在同一解剖结构的相似表征和器官与背景的区分度低造成冗余信息过多的问题,提出了一种基于高斯偏置自注意力和交叉注意力的网络模型(Gaussian bias and Contextual cross Attention U-Net,GCA-UNet)。采用残差模块建立空间先验假设,通过高斯偏置自注意力&外注意力模块的高斯偏置自注意力来学习空间先验假设和强化相邻区域的特征表示,并利用外注意力机制学习同一样本下不同切片之间的相关性;上下文交叉注意力门控利用多尺度特征提取来强化结构和边界信息,同时对上下文语义信息进行重新校准并筛除冗余信息。实验结果表明,在Synapse腹腔CT多器官分割数据集和ACDC心脏MRI数据集上,GCA-UNet网络的分割精度指标Mean Dice分别达到了81.37%和91.69%,在Synapse数据集上边界分割精度指标Mean hd95达到16.01。相比其他先进医学影像分割模型,GCA-Unet分割精度更高,具有更清晰的组织边界。 展开更多
关键词 医学图像分割 U型网络 高斯偏置 注意力机制 上下文交叉注意力门控
在线阅读 下载PDF
基于图文关联与上下文引导的军事新闻图集描述生成方法
9
作者 梅运红 刘茂福 《计算机工程与科学》 CSCD 北大核心 2024年第9期1625-1634,共10页
传统的图像描述生成方法由于缺少现实世界的先验知识,生成的描述文本不具有解释性,同时在某些专业领域生成的描述文本准确性不高。针对上述问题,提出了军事新闻图集描述生成任务,还构建了军事新闻图集数据集。该任务存在2个关键挑战:描... 传统的图像描述生成方法由于缺少现实世界的先验知识,生成的描述文本不具有解释性,同时在某些专业领域生成的描述文本准确性不高。针对上述问题,提出了军事新闻图集描述生成任务,还构建了军事新闻图集数据集。该任务存在2个关键挑战:描述信息来源于整个图集和对应的新闻文本中,模型学习到的语义不够充分。进一步提出了一种基于图文关联与上下文引导的军事新闻图集描述生成方法ITRCG。基于ITRCG实现跨模态信息交互,引导模型学习更完整的语义,并通过标签清理辅助命名实体生成。在构建的军事新闻图集数据集上进行了验证实验,结果表明ITRCG能够有效提高描述文本的质量,在各项评价指标上均取得了提升。 展开更多
关键词 图像描述 图文关联注意力 上下文引导注意力 图集 新闻文本
在线阅读 下载PDF
基于多尺度混合注意力的行人重识别模型
10
作者 刘家林 宣士斌 罗俊 《计算机工程与设计》 北大核心 2024年第11期3397-3404,共8页
针对目前行人重识别中复杂背景下人物容易被遮挡物掩盖和人物特征不明显导致模型难以提取重点特征的问题,提出一种基于多尺度混合注意力的行人重识别模型。在特征提取部分,设计一种特征提取模块,即多尺度混合注意力残差块,通过该模块可... 针对目前行人重识别中复杂背景下人物容易被遮挡物掩盖和人物特征不明显导致模型难以提取重点特征的问题,提出一种基于多尺度混合注意力的行人重识别模型。在特征提取部分,设计一种特征提取模块,即多尺度混合注意力残差块,通过该模块可得到丰富上下文关系,在频域范围内获得更丰富的通道特征信息。通过在大型数据集Market1501、DukeMTMC-reID、CUHK03-L、CUHK03-D上的验证,行人重识别的精度得到了有效提升,与目前先进的模型结果对比,mAP精度提升了0.3%、2.1%、0.7%、2.9%,Rank1在DukeMTMC-reID、CUHK03-L数据集提升了0.2%、0.8%。 展开更多
关键词 行人重识别 上下文注意力机制 多谱通道注意力 深度学习 混合注意力机制 多分支网络结构 全尺度特征
在线阅读 下载PDF
基于改进的YOLOv8n海洋动物目标检测算法:DPSC-YOLO 被引量:1
11
作者 梁佳杰 徐慧英 +3 位作者 朱信忠 王舒梦 刘子洋 李琛 《计算机工程与科学》 北大核心 2025年第4期695-705,共11页
在海洋复杂的环境中,由于图像拍摄模糊、背景复杂,导致基于深度学习的目标检测算法存在特征提取困难和目标漏检等问题,因此海洋目标检测算法需要更加高效且性能优越。为此提出了一种基于YOLOv8n改进的海洋动物目标检测算法:DPSC-YOLO。... 在海洋复杂的环境中,由于图像拍摄模糊、背景复杂,导致基于深度学习的目标检测算法存在特征提取困难和目标漏检等问题,因此海洋目标检测算法需要更加高效且性能优越。为此提出了一种基于YOLOv8n改进的海洋动物目标检测算法:DPSC-YOLO。在主干网络中引入DCNv2模块,通过增强空间建模能力来适应对象的几何变化;在主干网络末端引入空间金字塔池化SPPFCSPC,在保持模型感知场不变的同时减少模型的计算量;在颈部网络增加F 2极小目标检测头,结合其余3个尺度,使用4个不同的感受野检测层提高小目标检测精度;在颈部网络的C2f模块中结合CoTAttention注意力机制更好地利用相邻键之间的上下文信息,并根据数据的特点动态调整注意力分配。实验结果表明,DPSC-YOLO目标检测算法与YOLOv8n相比mAP@0.5提升了1.1%,mAP@0.5:0.95提升了4.6%,同时仅有较少的参数量和计算量的增加,证明DPSC-YOLO更适合复杂海洋环境中的目标检测任务。 展开更多
关键词 YOLOv8 DCNv2 SPPFCSPC 上下文注意力机制 小目标检测头
在线阅读 下载PDF
面向复杂背景环境下垃圾检测的YOLOv8n轻量化改进
12
作者 孙世政 何玲玲 +2 位作者 郑帅 徐向阳 陈仁祥 《电子测量与仪器学报》 北大核心 2025年第2期136-146,共11页
垃圾检测与分类对推动绿色经济和实现低碳循环具有重要意义,面向复杂背景环境的垃圾检测模型存在参数量大、计算成本高等问题,限制了模型在资源受限设备上的应用。为解决上述问题,提出一种轻量化的GCAW-YOLOv8n模型,旨在平衡模型轻量化... 垃圾检测与分类对推动绿色经济和实现低碳循环具有重要意义,面向复杂背景环境的垃圾检测模型存在参数量大、计算成本高等问题,限制了模型在资源受限设备上的应用。为解决上述问题,提出一种轻量化的GCAW-YOLOv8n模型,旨在平衡模型轻量化与精度检测。首先,在YOLOv8n骨干网络中引入GhostNet网络中的C3Ghost和GhostConv模块,有效降低模型参数量;其次,添加上下文锚点注意力机制,增强特征提取能力,提升检测精度;然后,在特征融合阶段,构建渐近特征金字塔网络,提升多尺度目标检测能力;接着,采用WIoU v3边界损失函数优化网络边界框回归性能;最后,结合Taco数据集和人工采集数据集进行了模型验证实验。实验结果表明,相比原YOLOv8n模型,改进后的GCAW-YOLOv8n模型在模型参数量Params和计算量FLOPs分别降低了14.3%和33.3%,而精确度和召回率分别提高了4.4%和1.9%,同时mAP@0.5达到了81.3%,提升了0.7%。改进模型更好地平衡了模型轻量化和检测精度,对模型部署与应用至边缘端检测装备具有重要的工程意义。 展开更多
关键词 垃圾检测 轻量化YOLOv8n GhostNet 上下文锚点注意力机制 渐近特征金字塔
在线阅读 下载PDF
全局语义感知与纹理频域约束的激光干扰图像修复
13
作者 赵佩瑶 冯斌 +3 位作者 杨欣朋 苗锡奎 吴云龙 叶庆 《红外与激光工程》 北大核心 2025年第5期324-338,共15页
成像设备在受到外界激光干扰时,干扰光斑会遮挡显著目标的有效信息,导致图像质量显著下降,对后续工作带来困扰。针对激光干扰图像修复的问题,提出了基于全局语义感知与纹理频域约束的激光干扰图像修复网络模型。该模型由全局语义引导阶... 成像设备在受到外界激光干扰时,干扰光斑会遮挡显著目标的有效信息,导致图像质量显著下降,对后续工作带来困扰。针对激光干扰图像修复的问题,提出了基于全局语义感知与纹理频域约束的激光干扰图像修复网络模型。该模型由全局语义引导阶段和局部细节增强阶段两部分组成:全局语义引导阶段通过结合滑动窗口的自注意力机制和分层结构的HBES(Hybrid Block of ESA andSTL)模块逐步扩大感受野以提取全局上下文信息,从而准确地推断出干扰区域的合理内容;局部细节增强阶段则以全局语义引导阶段的预测结果为输入,通过分析未干扰区域和干扰区域之间的相似性,将背景和干扰区域的关联信息相结合,生成高质量的修复结果。此外,为提升网络对纹理细节的关注,设计了一种余弦变换损失函数,强调图像细节部分的修复,使干扰区域的重建图像清晰、连贯。实验结果表明,该模型在激光干扰图像修复任务上取得了良好的修复效果,有效改善了图像质量。 展开更多
关键词 图像修复 激光干扰 上下文注意力机制 生成对抗网络 离散余弦变换
在线阅读 下载PDF
不平衡数据下面向包粒度应用层负载的轻量化入侵检测模型
14
作者 杨毅铭 陈世平 《小型微型计算机系统》 北大核心 2025年第2期465-473,共9页
网络入侵检测是一种重要的网络安全方案.目前网络入侵检测模型都有较高精确度,但是模型复杂,参数量和计算量较大.针对该问题,设计了一种新的基于包粒度应用层负载的网络入侵检测一维卷积轻量模型.本文首先对UNSWNB15数据集的原始流量文... 网络入侵检测是一种重要的网络安全方案.目前网络入侵检测模型都有较高精确度,但是模型复杂,参数量和计算量较大.针对该问题,设计了一种新的基于包粒度应用层负载的网络入侵检测一维卷积轻量模型.本文首先对UNSWNB15数据集的原始流量文件进行包粒度应用层负载数据提取,构造一维灰度特征向量.在此基础上,本文提出一种由新的一维深度可分离卷积残差模块组成,融入了全局上下文注意力机制(Global Context Attention Module)的一维卷积轻量模型Fast Payload,并进行了针对性的模型优化和可行性论证.Fast Payload模型在UNSWNB15数据集上的9分类任务中宏平均准确率达到82.433%,加权平均精确率达到90.820%,均高于对比模型;同时,该模型计算量和参数量均低于对比模型.其次本文提出了二阶段类别平衡损失函数GHM2StageLoss,有效解决了数据集的类别不平衡问题,相比其他类别平衡损失函数,效果更好.为方便后续研究的复现,本研究开源部分源代码,网址为https://github.com/sadantange/FastPayload. 展开更多
关键词 入侵检测 一维卷积神经网络 深度可分离卷积 全局上下文注意力机制 类别平衡
在线阅读 下载PDF
改进YOLOv8的鱼类识别算法
15
作者 成顺 李建荣 +2 位作者 王永伟 刘绍锦 韩岩 《计算机工程与设计》 北大核心 2025年第6期1788-1795,共8页
为解决常见鱼类识别算法存在实时性差、计算成本高昂等问题,研究一种轻量化嵌入式水下鱼类识别算法。使用GhostConv精简网络。在下采样添加上下文注意力机制,替换CIoU为Wise-IoU损失函数,将改进后的算法与常见识别算法进行对比。在ACID... 为解决常见鱼类识别算法存在实时性差、计算成本高昂等问题,研究一种轻量化嵌入式水下鱼类识别算法。使用GhostConv精简网络。在下采样添加上下文注意力机制,替换CIoU为Wise-IoU损失函数,将改进后的算法与常见识别算法进行对比。在ACID数据集上,实验结果表明,改进后的GCW-YOLOv8模型与原始模型相比,平均精确率达到98.7%、模型的参数量减小了12%,模型大小减小了10%。基本满足水下嵌入式识别算法的轻量化、精度高等要求。 展开更多
关键词 图像处理 目标检测 YOLOv8 轻量化 特征增强 Wise-交并比 上下文聚合注意力
在线阅读 下载PDF
改进YOLOv8的恶劣天气下船舶目标检测算法研究
16
作者 李纯杰 蔡易南 +1 位作者 胡杰 詹炜 《现代电子技术》 北大核心 2025年第12期77-82,共6页
针对现有内河航道中由于雨、雪、雾等恶劣天气导致的船只检测困难问题,提出一种基于YOLOv8的航道船舶目标检测方法,即YOLOv8-Ship。该算法设计一种特征聚焦扩散金字塔网络,融合YOLOv9中的ADown模块,使每个尺度的特征保留更多的上下文信... 针对现有内河航道中由于雨、雪、雾等恶劣天气导致的船只检测困难问题,提出一种基于YOLOv8的航道船舶目标检测方法,即YOLOv8-Ship。该算法设计一种特征聚焦扩散金字塔网络,融合YOLOv9中的ADown模块,使每个尺度的特征保留更多的上下文信息;同时引入聚核初始网络(PKINet)以及上下文锚点注意力模块(CAA)改进C2f,来增强中心区域的特征;最后采用深度可分离卷积取代骨干网络中的普通卷积,减少模型参数量和计算量。实验结果表明,在雨、雪、雾的天气条件下,与传统的YOLOv8n相比,改进算法的精确率提高了0.5%,召回率提升了3.4%,F1分数提升了2%,mAP@0.5提升了1.2%,平均精度均值达到97.5%,有效提高了内河航道恶劣天气下过往船只的识别精度,具备较强的鲁棒性。 展开更多
关键词 船舶检测 YOLOv8算法 恶劣天气 聚核初始网络 上下文锚点注意力模块 特征识别
在线阅读 下载PDF
改进YOLOv10的架空输电线路多缺陷检测方法
17
作者 李坤祥 刘大明 《电子测量技术》 北大核心 2025年第9期156-167,共12页
针对输电线路缺陷检测任务中目标尺度多样、背景复杂、目标遮挡,以及现有目标检测算法难以在实时检测的前提下保证检测精度而出现漏检、误检的问题,提出改进YOLOv10的输电线路无人机巡检缺陷检测算法TLDDet。首先设计融合部分卷积和上... 针对输电线路缺陷检测任务中目标尺度多样、背景复杂、目标遮挡,以及现有目标检测算法难以在实时检测的前提下保证检测精度而出现漏检、误检的问题,提出改进YOLOv10的输电线路无人机巡检缺陷检测算法TLDDet。首先设计融合部分卷积和上下文锚点注意力的高效特征融合模块(FC2FA),在降低模型参数量的同时提升模型的特征集成能力。然后使用基于多头自注意力机制的尺度内特征交互模块AIFI增强对小目标的检测效果,该模块通过加强特征图中高级语义信息的表达从而提高模型检测的准确率。最后设计遮挡感知注意网络检测头SEAM-Head,减少由于遮挡问题导致的特征丢失的问题。实验结果表明,所提出的TLDDet较原始模型YOLOv10s参数量减少33%,计算量减少30%,对输电线路多种缺陷的Precision、Recall和mAP50分别提高4.3%、2.4%和3.7%,检测速度达到143 FPS,且与其他实时检测算法的对比中具有更好的检测性能。 展开更多
关键词 输电线路缺陷检测 YOLOv10 实时检测 特征融合 上下文锚点注意力 尺度内特征交互 遮挡感知注意网络
在线阅读 下载PDF
基于深度神经网络的多视角人体动作识别 被引量:9
18
作者 赵瑛 陆耀 +2 位作者 张健 梁启弟 龙炜 《系统仿真学报》 CAS CSCD 北大核心 2021年第5期1019-1030,共12页
为提高多视角人体动作识别的精度,提出了一种新的深度神经网络模型——CNN+CA(Convolutional Neural Networkplus Context Attention)模型和一种基于序列匹配的识别方法。利用卷积神经网络自动学习出多视角融合特征;引入上下文注意力模... 为提高多视角人体动作识别的精度,提出了一种新的深度神经网络模型——CNN+CA(Convolutional Neural Networkplus Context Attention)模型和一种基于序列匹配的识别方法。利用卷积神经网络自动学习出多视角融合特征;引入上下文注意力模块自动突出特征中有利于识别的区域,进一步提高特征的判别力;通过基于序列匹配的方法实现人体动作识别。在IXMAS数据集和i3DPost数据集上的实验结果表明,所提方法在识别精度上超过了其他同类方法。 展开更多
关键词 多视角 人体动作识别 卷积神经网络 上下文注意力 序列匹配
在线阅读 下载PDF
基于改进生成对抗网络的书法字生成算法 被引量:6
19
作者 李云红 段姣姣 +3 位作者 苏雪平 张蕾涛 于惠康 刘杏瑞 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第7期1326-1334,1459,共10页
针对生成对抗网络生成字体存在笔画缺失、字形结构错乱、图像模糊与质量差的问题,提出改进zi2zi生成对抗网络的书法字生成算法.在编码器中引入卷积核为1的残差块,提高生成器提取书法字体细节特征的能力,通过增加上下文感知注意力结构提... 针对生成对抗网络生成字体存在笔画缺失、字形结构错乱、图像模糊与质量差的问题,提出改进zi2zi生成对抗网络的书法字生成算法.在编码器中引入卷积核为1的残差块,提高生成器提取书法字体细节特征的能力,通过增加上下文感知注意力结构提取书法字体的风格特征.在判别器中利用谱归一化增强模型的稳定性,避免因模型训练不稳定而带来的模式崩塌.采用最小绝对误差L1范数约束生成字体边缘特征,使得字体轮廓更加清晰,最终生成2种风格的书法字.颜真卿楷书与赵孟頫行书目标风格数据集的测试结果表明,提出算法的主观客观评价结果均优于对比算法,与zi2zi相比,峰值信噪比分别提高了1.58、1.76 dB,结构相似性分别提高了5.66%、6.91%,感知相似性分别降低了4.21%、6.20%. 展开更多
关键词 书法字生成 深度学习 生成对抗网络 上下文感知注意力 边缘损失
在线阅读 下载PDF
交叉门控融合的改进语义分割网络及应用 被引量:2
20
作者 陈海永 刘新如 《重庆理工大学学报(自然科学)》 北大核心 2023年第6期187-195,共9页
针对太阳能电池表面的断栅、划痕、黑斑等导致的缺陷分割精度差的问题,提出一种交叉门控融合的改进语义分割网络。使用门控机制选择性地融合网络中的多尺度信息,充分利用底层细节信息和高层语义信息,增强微小缺陷的特征表示,并结合上下... 针对太阳能电池表面的断栅、划痕、黑斑等导致的缺陷分割精度差的问题,提出一种交叉门控融合的改进语义分割网络。使用门控机制选择性地融合网络中的多尺度信息,充分利用底层细节信息和高层语义信息,增强微小缺陷的特征表示,并结合上下文模块提高获取全文信息的能力。为了进一步解决太阳能电池缺陷边缘信息弱的问题,引入PointRend模块对缺陷边缘的点进行采样,对边缘中不确定的点实行自适应细分策略,实现对缺陷边缘的精细分割。实验结果表明:所提方法在太阳能EL组件电池数据集上的mIoU达到了65.53%。和现有的语义分割算法相比,所提方法能够有效细化目标边界,更好地处理微小微弱缺陷。 展开更多
关键词 太阳能电池 缺陷分割 多尺度特征 门控融合 上下文注意力
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部