该文针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像含有大量的乘性斑点噪声的特点,提出了一种小波域隐类属的马尔可夫随机场(Markov Random Field,MRF)图像分割算法来抑制噪声的影响。考虑到小波的聚集性和持续性,该算法重新构...该文针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像含有大量的乘性斑点噪声的特点,提出了一种小波域隐类属的马尔可夫随机场(Markov Random Field,MRF)图像分割算法来抑制噪声的影响。考虑到小波的聚集性和持续性,该算法重新构造了待分图像小波域模型——以类属为隐状态的混合长拖尾模型,将隐类属的马尔可夫随机场推广到小波域上,并用改进的上下文模型估计尺度间转移概率,最后推导出了新的最大后验(Maximum A Posteriori,MAP)分割公式。仿真结果证明,该算法具有鲁棒性能够有效地抑制噪声对图像的影响,得到准确的分割结果。展开更多
随着Web 所拥有的信息量和信息种类的急剧增长,Web 站点挖掘对于自动实现特定主题的 Web 资源发现和分类具有重要的意义.然而现有的 Web 站点分类或挖掘算法在利用上下文语义信息、去除噪声信息以进一步提高分类准确率等方面还缺乏深入...随着Web 所拥有的信息量和信息种类的急剧增长,Web 站点挖掘对于自动实现特定主题的 Web 资源发现和分类具有重要的意义.然而现有的 Web 站点分类或挖掘算法在利用上下文语义信息、去除噪声信息以进一步提高分类准确率等方面还缺乏深入研究.从站点的采样尺寸、分析粒度和描述结构 3 个方面分析了设计高效的 Web 站点挖掘算法所需要解决的问题.在此基础上,提出了一种新的 Web 站点多粒度树描述模型,并描述了包括基于隐 Markov 树的两阶段分类算法、粒度间上下文融合算法、两阶段去噪程序以及基于熵的动态剪枝策略在内的多粒度 Web 站点挖掘算法.站点的多粒度描述方法及挖掘算法为多站点查询优化、Web 效用挖掘等的深入研究奠定了基础.实验表明,该算法相对于基线系统平均可以提高 16%的分类准确率,并减少了 34.5%的处理时间.展开更多
文摘该文针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像含有大量的乘性斑点噪声的特点,提出了一种小波域隐类属的马尔可夫随机场(Markov Random Field,MRF)图像分割算法来抑制噪声的影响。考虑到小波的聚集性和持续性,该算法重新构造了待分图像小波域模型——以类属为隐状态的混合长拖尾模型,将隐类属的马尔可夫随机场推广到小波域上,并用改进的上下文模型估计尺度间转移概率,最后推导出了新的最大后验(Maximum A Posteriori,MAP)分割公式。仿真结果证明,该算法具有鲁棒性能够有效地抑制噪声对图像的影响,得到准确的分割结果。
文摘随着Web 所拥有的信息量和信息种类的急剧增长,Web 站点挖掘对于自动实现特定主题的 Web 资源发现和分类具有重要的意义.然而现有的 Web 站点分类或挖掘算法在利用上下文语义信息、去除噪声信息以进一步提高分类准确率等方面还缺乏深入研究.从站点的采样尺寸、分析粒度和描述结构 3 个方面分析了设计高效的 Web 站点挖掘算法所需要解决的问题.在此基础上,提出了一种新的 Web 站点多粒度树描述模型,并描述了包括基于隐 Markov 树的两阶段分类算法、粒度间上下文融合算法、两阶段去噪程序以及基于熵的动态剪枝策略在内的多粒度 Web 站点挖掘算法.站点的多粒度描述方法及挖掘算法为多站点查询优化、Web 效用挖掘等的深入研究奠定了基础.实验表明,该算法相对于基线系统平均可以提高 16%的分类准确率,并减少了 34.5%的处理时间.