期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于上下文信息和核熵成分分析的目标分类算法 被引量:7
1
作者 潘泓 朱亚平 +1 位作者 夏思宇 金立左 《电子学报》 EI CAS CSCD 北大核心 2016年第3期580-586,共7页
结合图像属性上下文信息和核熵成分分析,构造了一种新颖的基于下上文信息的局部特征描述子——上下文核描述子(Context Kernel Descriptors,CKD).上下文信息的引入提高了CKD特征的鲁棒性,减少了特征误匹配.核熵成分分析从全维CKD特征分... 结合图像属性上下文信息和核熵成分分析,构造了一种新颖的基于下上文信息的局部特征描述子——上下文核描述子(Context Kernel Descriptors,CKD).上下文信息的引入提高了CKD特征的鲁棒性,减少了特征误匹配.核熵成分分析从全维CKD特征分量中选出最能代表目标几何结构信息的特征分量,将其投影到这些特征分量张成的子空间上可得到降维CKD特征.在Caltech-101和CIFAR-10的测试结果表明,CKD的分类性能不仅明显优于其它局部特征描述子,还优于多数基于稀疏表示和深度学习等复杂模型的目标分类算法. 展开更多
关键词 上下文核描述子 熵成分分析 特征降维 目标分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部