如何在遥感图像数据库中快速、准确地找出目标图像,是检索系统的核心所在。基于对上下文语境敏感的贝叶斯网络(content-sensitive Bayesian network,CSBN),建立了含有方向关系的检索模型,并根据城市区域的特点,提出了适合城市区域检索...如何在遥感图像数据库中快速、准确地找出目标图像,是检索系统的核心所在。基于对上下文语境敏感的贝叶斯网络(content-sensitive Bayesian network,CSBN),建立了含有方向关系的检索模型,并根据城市区域的特点,提出了适合城市区域检索的方法。首先,通过贝叶斯网络对图像进行检索;然后,依据图像的平均高频信号强度(average high frequency signal strength,AHFSS)对候选图像进行筛选;最后,得到含有城市区域这一高级语义特征的最终检索结果。为了确定图像内部的方向关系,采用东北、西北、东南和西南4个区域的方向描述图像的8种方向关系,有效降低了算法的时间复杂度。实验结果表明,该方法可有效地描述图像的场景语义,并具有较高的查准率和检索效率,可满足用户的需求。展开更多
在遥感图像多变化检测领域中,后验概率空间变化向量分析(change vector analysis in posterior probability space,CVAPS)是一种得到广泛使用的变化检测方法。然而,CVAPS利用支持向量机来估计遥感图像像素的后验概率向量,易受到遥感图...在遥感图像多变化检测领域中,后验概率空间变化向量分析(change vector analysis in posterior probability space,CVAPS)是一种得到广泛使用的变化检测方法。然而,CVAPS利用支持向量机来估计遥感图像像素的后验概率向量,易受到遥感图像中同物异谱、异物同谱、混合像元等因素的影响,从而难以准确估计复杂像元的后验概率向量的强度和方向,并影响了其后多元变化检测的精度。因此,文章在CVAPS的框架下,提出了一种采用模糊C均值聚类分解混合像元,并耦合上下文敏感的贝叶斯网络,使用角度阈值进行多变化类型检测的方法。当夹角小于一定阈值时,则判定该像素为该标准变化向量所代表的变化类型。实验结果证明该算法具有较高变化检测性能,取得了高于对比算法的精度。展开更多
文摘如何在遥感图像数据库中快速、准确地找出目标图像,是检索系统的核心所在。基于对上下文语境敏感的贝叶斯网络(content-sensitive Bayesian network,CSBN),建立了含有方向关系的检索模型,并根据城市区域的特点,提出了适合城市区域检索的方法。首先,通过贝叶斯网络对图像进行检索;然后,依据图像的平均高频信号强度(average high frequency signal strength,AHFSS)对候选图像进行筛选;最后,得到含有城市区域这一高级语义特征的最终检索结果。为了确定图像内部的方向关系,采用东北、西北、东南和西南4个区域的方向描述图像的8种方向关系,有效降低了算法的时间复杂度。实验结果表明,该方法可有效地描述图像的场景语义,并具有较高的查准率和检索效率,可满足用户的需求。
文摘在遥感图像多变化检测领域中,后验概率空间变化向量分析(change vector analysis in posterior probability space,CVAPS)是一种得到广泛使用的变化检测方法。然而,CVAPS利用支持向量机来估计遥感图像像素的后验概率向量,易受到遥感图像中同物异谱、异物同谱、混合像元等因素的影响,从而难以准确估计复杂像元的后验概率向量的强度和方向,并影响了其后多元变化检测的精度。因此,文章在CVAPS的框架下,提出了一种采用模糊C均值聚类分解混合像元,并耦合上下文敏感的贝叶斯网络,使用角度阈值进行多变化类型检测的方法。当夹角小于一定阈值时,则判定该像素为该标准变化向量所代表的变化类型。实验结果证明该算法具有较高变化检测性能,取得了高于对比算法的精度。