期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于分层表示和上下文增强的类摘要生成技术 被引量:2
1
作者 陈豪伶 虞慧群 +2 位作者 范贵生 李明辰 黄子杰 《计算机研究与发展》 EI CSCD 北大核心 2024年第2期307-323,共17页
代码摘要是源代码的自然语言解释,高质量的代码摘要有助于提高开发人员程序理解效率.近年来,代码自动摘要的研究集中在为方法粒度的代码片段生成摘要.然而,对于面向对象的语言,例如Java,类才是项目的基本组成单元.基于上述问题,提出一... 代码摘要是源代码的自然语言解释,高质量的代码摘要有助于提高开发人员程序理解效率.近年来,代码自动摘要的研究集中在为方法粒度的代码片段生成摘要.然而,对于面向对象的语言,例如Java,类才是项目的基本组成单元.基于上述问题,提出一种基于分层表示和上下文增强的类摘要生成方法HRCE(hierarchical representation and context enhancement),并构建了一个包含358 992个?Java类,上下文,摘要?数据对的类摘要数据集.HRCE使用代码精简策略去除类的非关键代码,从而缩短代码长度.然后,对类的层次结构,包括类签名、属性和方法分别进行建模,获得类的语义信息和层次结构信息.此外,从项目中抽取父类的签名及摘要来刻画类在项目中依赖的上下文.实验表明,基于分层表示和上下文增强的生成模型能够表征代码的语义和层次结构,并可以从目标类的内部和外部获取信息. HRCE在BLEU,METEOR,ROUGE-L等评估指标上超过了所有基准模型. 展开更多
关键词 代码自动摘要 分层表示 上下文增强 深度学习 类摘要
在线阅读 下载PDF
基于上下文增强和特征提纯的小目标检测网络 被引量:15
2
作者 肖进胜 赵陶 +2 位作者 周剑 乐秋平 杨力衡 《计算机研究与发展》 EI CSCD 北大核心 2023年第2期465-474,共10页
微小目标的纹理模糊、包含特征少,是目标检测领域的难点.针对小目标检测提出一种新的上下文增强模块(context augmentation module,CAM)和特征提纯模块(feature refinement module,FRM)相结合的特征金字塔复合结构.利用多尺度空洞卷积... 微小目标的纹理模糊、包含特征少,是目标检测领域的难点.针对小目标检测提出一种新的上下文增强模块(context augmentation module,CAM)和特征提纯模块(feature refinement module,FRM)相结合的特征金字塔复合结构.利用多尺度空洞卷积的特征融合,补充网络中的上下文信息;引入通道和空间的特征提纯机制来抑制多尺度特征融合后的冲突信息,防止小目标淹没在冲突信息中;同时,引入复制—缩小—粘贴(copy-reduce-paste)的数据增强方法提高小目标的占比,使训练时小目标对损失值的贡献更大,训练更加平衡.由实验结果可知,所提出的算法在VOC数据集上目标检测的平均精度均值(Mean Average Precision,mAP)达到了83.6%(交并比为0.5);对小目标检测的AP值达到了16.9%(交并比为0.5~0.95),比YOLOV4,CenterNet,RefineDet的分别提高3.9%,7.7%和5.3%.在TinyPerson数据集上小目标检测的AP值为55.1%,比YOLOV5,DSFD的分别提高0.8%和3.5%. 展开更多
关键词 小目标检测 上下文增强 特征提纯 空洞卷积 数据增强
在线阅读 下载PDF
基于上下文增强LSTM的多模态情感分析 被引量:12
3
作者 刘启元 张栋 +1 位作者 吴良庆 李寿山 《计算机科学》 CSCD 北大核心 2019年第11期181-185,共5页
近年来,多模态情感分析成为了越来越受欢迎的热门领域,它将传统的基于文本的情感分析扩展到文本、图像以及声音相结合的多模态分析层面。多模态情感分析通常需要获取单模态内部的信息以及多模态之间的交互信息。为了利用每个模态中语言... 近年来,多模态情感分析成为了越来越受欢迎的热门领域,它将传统的基于文本的情感分析扩展到文本、图像以及声音相结合的多模态分析层面。多模态情感分析通常需要获取单模态内部的信息以及多模态之间的交互信息。为了利用每个模态中语言表达的上下文来帮助获取这两种信息,文中提出了一种基于上下文增强LSTM的多模态情感分析方法。具体而言,首先对于多模态的每种表达,结合上下文特征,分别使用LSTM进行编码,再分别捕捉单模态内部的信息;接着融合这些单模态的独立信息,再使用LSTM获得多模态间的交互信息,从而形成多模态特征表示;最后采用最大池化策略,对多模态表示进行降维,从而构建情感分类器。该方法在MOSI数据集上的ACC值达到75.3%,F1达到了74.9。相比传统的机器学习方法(如SVM),所提方法的ACC值高出8.1%,F 1值高出7.3。相比目前较为先进的深度学习方法值,所提方法在ACC值上高出0.9%,F1值上高出1.3,与此同时可训练参数量只有之前方法的1/20,训练速度提高了约10倍。大量的对比实验结果表明,相比传统的多模态情感分类方法,所提方法的性能有显著提升。 展开更多
关键词 多模态 情感分析 上下文增强
在线阅读 下载PDF
基于空间级解耦和上下文增强的行人搜索方法
4
作者 庞彦伟 王佳蓓 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2023年第12期1307-1316,共10页
行人搜索是一个同时处理行人检测与行人重识别的联合任务.然而,行人检测与行人重识别之间存在任务冲突:行人检测旨在区分人与背景区域,关注行人的共性;行人重识别旨在辨别不同人,关注行人的特性.针对此任务冲突,与以往堆叠多个卷积层的... 行人搜索是一个同时处理行人检测与行人重识别的联合任务.然而,行人检测与行人重识别之间存在任务冲突:行人检测旨在区分人与背景区域,关注行人的共性;行人重识别旨在辨别不同人,关注行人的特性.针对此任务冲突,与以往堆叠多个卷积层的深度级解耦方式不同,基于空间分离的思想,提出了一种简单高效的空间级解耦策略.该策略为两个任务设计不同的可形变卷积,自适应地在不同位置上分别提取行人检测特征与行人重识别特征,实现了行人共性与特性的分离.进一步,为了利用丰富的上下文信息帮助更好地辨别不同的行人,提出了一种上下文增强特征提取模块.该模块使用全局感知的多头注意力网络生成信息互补的多级特征,然后利用所设计的基于自注意力机制的多级特征融合模块,融合得到上下文增强特征.在该上下文增强特征的基础上,应用上述空间级解耦策略对其不同空间位置进行采样,解耦行人检测和行人重识别两个任务.实验结果表明,所提方法在CUHK-SYSU测试集上mAP和top-1准确率分别达到了94.2%和94.6%,在PRW测试集上mAP和top-1准确率分别达到了52.6%和87.6%,能够有效地提升行人搜索任务性能. 展开更多
关键词 行人搜索 行人检测 行人重识别 形变卷积 上下文增强
在线阅读 下载PDF
上下文感知增强的多轮个性化对话检索方法研究
5
作者 陈彦冰 李琳 《中文信息学报》 北大核心 2025年第7期114-126,共13页
个性化回复检索系统通常使用对话者画像(Persona)作为额外的知识来保持回复的一致性,并通过对话历史来共同选择符合语境的个性化回复。然而,现有的研究在进行这两者与回复的深层交互中,仍存在选择与对话历史矛盾或不符合画像的回复。针... 个性化回复检索系统通常使用对话者画像(Persona)作为额外的知识来保持回复的一致性,并通过对话历史来共同选择符合语境的个性化回复。然而,现有的研究在进行这两者与回复的深层交互中,仍存在选择与对话历史矛盾或不符合画像的回复。针对上述问题,该文提出了上下文感知增强的深度交互模型CEDI。该模型使用提示学习将个性化回复检索任务重构为掩码语言模型和连续语句检测的任务形式,并融入说话人及其画像表征增强多轮对话的句子间、句子内,以及对话场景的上下文对于选择回复的指导作用。此外,还利用多级注意力模块进行全局和局部的对话关键特征提取。在PERSONA-CHAT数据集上的实验结果表明,该文提出的模型在召回率(hits@1)和均值倒数序位(MRR)方面都优于现有的方法。在不同设定场景下,hit@1提升了0.7%~2.7%,MRR提升了0.9%~2.3%。 展开更多
关键词 个性化对话检索 上下文感知增强 提示学习 多轮对话系统
在线阅读 下载PDF
融合注意力和上下文信息的遥感图像小目标检测算法
6
作者 刘赏 周煜炜 +2 位作者 代娆 董林芳 刘猛 《计算机应用》 北大核心 2025年第1期292-300,共9页
对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提... 对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提出一种融合注意力和上下文信息的遥感图像小目标检测算法ACM-YOLO(Attention-Context-Multiscale YOLO)。首先,应用细粒度的查询感知稀疏注意力以减少小目标特征信息的丢失,从而避免漏检;其次,设计局部上下文增强(LCE)函数以更好地关注不同类别的遥感目标所需的上下文信息,从而避免误检;最后,使用加权双向特征金字塔网络(BiFPN)强化特征融合模块对遥感图像小目标的多尺度特征融合能力,从而改善算法检测效果。在DOTA数据集和NWPU VHR-10数据集上进行对比实验和消融实验,以验证所提算法的有效性和泛化性。实验结果表明,在2个数据集上所提算法的平均精确率均值(mAP)分别达到了77.33%和96.12%,而相较于YOLOv5算法,召回率分别提升了10.00和7.50个百分点。可见,所提算法能有效提升mAP和召回率,减少误检和漏检。 展开更多
关键词 遥感图像 小目标检测 稀疏采样 局部上下文信息增强 多尺度特征融合
在线阅读 下载PDF
基于上下文信息增强与特征细化的绝缘子破损检测方法 被引量:13
7
作者 李利荣 张云良 +3 位作者 陈鹏 丁江 张国治 巩朋成 《高电压技术》 EI CAS CSCD 北大核心 2023年第8期3405-3414,共10页
快速准确地检测出绝缘子缺陷是电网维护的重要任务,也极具挑战性。针对目前主流绝缘子缺陷检测算法检测速度慢且模型复杂度较高的问题,提出一种基于上下文信息增强与特征细化的绝缘子破损检测方法。该方法采用轻量化的ECA-Ghost Net作... 快速准确地检测出绝缘子缺陷是电网维护的重要任务,也极具挑战性。针对目前主流绝缘子缺陷检测算法检测速度慢且模型复杂度较高的问题,提出一种基于上下文信息增强与特征细化的绝缘子破损检测方法。该方法采用轻量化的ECA-Ghost Net作为骨干网络,骨干网络输出端嵌入轻量化的自适应上下文信息增强模块,为绝缘子破损缺陷注入多尺度上下文信息;然后在特征金字塔输出端引入快速且高效的特征细化模块,用于增强绝缘子破损缺陷特征。在该文构建的数据集上进行了多组对比实验,结果表明该文提出的方法均值平均精度可达约97.05%,检测速度约为63帧/s,模型计算量和参数量分别为1.46 G和1.68 M,各项性能指标均优于Retina Net、YOLOv4和YOLOF等主流算法。该文研究结果可为无人机嵌入式应用提供参考。 展开更多
关键词 绝缘子 破损检测 上下文信息增强 特征细化 深度学习
在线阅读 下载PDF
通过N-gram增强局部上下文视野感知的中文生成式摘要 被引量:1
8
作者 尹宝生 安鹏飞 《中文信息学报》 CSCD 北大核心 2022年第8期135-143,153,共10页
基于序列到序列模型的生成式文档摘要算法已经取得了良好的效果。鉴于中文N-gram蕴含着丰富的局部上下文信息,该文提出将N-gram信息整合到现有模型的神经框架NgramSum,即利用N-gram信息增强神经模型局部上下文语义感知能力。该框架以现... 基于序列到序列模型的生成式文档摘要算法已经取得了良好的效果。鉴于中文N-gram蕴含着丰富的局部上下文信息,该文提出将N-gram信息整合到现有模型的神经框架NgramSum,即利用N-gram信息增强神经模型局部上下文语义感知能力。该框架以现有的神经模型为主干,从本地语料库提取N-gram信息,提出了一个局部上下文视野感知增强模块和一个门模块,并来分别对这些信息进行编码和聚合。在NLPCC 2017中文单文档摘要评测数据集上的实验结果表明:该框架有效增强了基于LSTM、Transformer、预训练模型三种不同层次的序列到序列的强基线模型,其中ROUGE-1/2/L相较基线模型平均分别提高了2.76,3.25,3.10个百分点。进一步的实验和分析也证明了该框架在不同N-gram度量方面的鲁棒性。 展开更多
关键词 生成式文摘 N-GRAM 局部上下文视野感知增强 门模块
在线阅读 下载PDF
基于增强上下文信息长短期记忆网络的弹道轨迹预测 被引量:13
9
作者 任济寰 吴祥 +2 位作者 薄煜明 吴盘龙 何山 《兵工学报》 EI CAS CSCD 北大核心 2023年第2期462-471,共10页
根据己方观测数据进行弹道轨迹预测是现代陆军实施精准打击的重要一环。针对现有弹道轨迹预测方法存在精度不足且实时性不强的问题,提出一种新的增强上下文信息长短期记忆(CE-LSTM)网络轨迹预测模型,进行弹道轨迹的长期精准预测。在LST... 根据己方观测数据进行弹道轨迹预测是现代陆军实施精准打击的重要一环。针对现有弹道轨迹预测方法存在精度不足且实时性不强的问题,提出一种新的增强上下文信息长短期记忆(CE-LSTM)网络轨迹预测模型,进行弹道轨迹的长期精准预测。在LSTM网络可逼近任意非线性函数且具备长期记忆能力的基础上,构建隐藏层输出混合单元提取短时上下文信息,进一步逼近弹体运动状态;通过建立不同条件下的弹道轨迹的数据集,训练得到具备最优超参数的CE-LSTM网络。实验结果表明,与弹道微分方程组的数值积分解法以及高斯混合模型相比,CE-LSTM网络在预测的精度上优于其他2种方法,预测速度提高了3~10倍,且具备较强的泛化能力。 展开更多
关键词 轨迹预测 增强上下文信息 长短期记忆网络 弹道微分方程组 高斯混合模型
在线阅读 下载PDF
基于YOLOv8n改进的PCB缺陷检测算法
10
作者 喻聪 《实验室研究与探索》 北大核心 2025年第6期117-124,共8页
针对PCB生产中的漏孔、鼠咬等微小缺陷检测问题,提出一种基于YOLOv8n改进的YOLOv8n-CSOW算法。通过在Backbone中增加空间深度转换卷积模块以增强特征捕获能力;在Neck部分,采用C2f-ODconv模块替换原始C2f模块强化特征精确匹配。同时,引... 针对PCB生产中的漏孔、鼠咬等微小缺陷检测问题,提出一种基于YOLOv8n改进的YOLOv8n-CSOW算法。通过在Backbone中增加空间深度转换卷积模块以增强特征捕获能力;在Neck部分,采用C2f-ODconv模块替换原始C2f模块强化特征精确匹配。同时,引入上下文增强模块强化特征表征。将边界框(BBox)损失函数优化为动态聚焦的WIoUv2函数,增强模型对微小缺陷的敏感度。实验结果表明,改进算法在某大学公开数据集上平均检测精度较原始YOLOv8n提升1.4个百分点,且优于主流目标检测算法,具备显著的工业检测应用价值。 展开更多
关键词 印刷电路板检测 上下文增强模块 空间深度转换卷积 全维动态卷积
在线阅读 下载PDF
基于改进YOLO v5算法的道路小目标检测 被引量:9
11
作者 宋存利 柴伟琴 张雪松 《系统工程与电子技术》 EI CSCD 北大核心 2024年第10期3271-3278,共8页
为解决交通道路小目标检测难度大、精度低,容易出现错检漏检的问题,提出一种基于YOLO v5(you only look once v5)算法的多尺度特征融合目标检测改进算法。首先,增加小目标检测头用于适应小目标尺寸,缓解漏检情况。然后,引入可变形卷积网... 为解决交通道路小目标检测难度大、精度低,容易出现错检漏检的问题,提出一种基于YOLO v5(you only look once v5)算法的多尺度特征融合目标检测改进算法。首先,增加小目标检测头用于适应小目标尺寸,缓解漏检情况。然后,引入可变形卷积网络v2(deformable convolutional networks V2,DCN V2)提高模型对运动中小目标的学习能力;同时,增加上下文增强模块,提升对远距离小目标的识别能力。最后,在替换损失函数、提高边界框定位精度的同时,使用空间金字塔池化和上下文空间金字塔卷积分组模块,提高网络的感受野和特征表达能力。实验结果表明,所提算法在KITTI数据集小目标类别上平均识别精度达到了95.2%,相较于原始YOLO v5,算法总体平均识别精度提升了2.7%,对小目标的检测效果更佳,平均识别精度提升了3.1%,证明所提算法在道路小目标检测方面的有效性。 展开更多
关键词 YOLO v5 小目标检测 上下文增强模块 可变形卷积
在线阅读 下载PDF
面向城市复杂场景的多尺度监督融合变化检测
12
作者 潘建平 谢鹏 +2 位作者 郭志豪 林娜 张慧娟 《遥感信息》 CSCD 北大核心 2024年第4期23-32,共10页
城市复杂场景中,地物形状多样,光照和成像角度变化大会导致变化检测结果受到干扰。为解决这些问题,文章提出了一种双上下文多尺度监督融合的网络模型(dual context multi-scale supervised fusion network model,DCMSFNet)。首先,在编... 城市复杂场景中,地物形状多样,光照和成像角度变化大会导致变化检测结果受到干扰。为解决这些问题,文章提出了一种双上下文多尺度监督融合的网络模型(dual context multi-scale supervised fusion network model,DCMSFNet)。首先,在编码部分使用双上下文增强模块获得地物丰富的全局上下文信息。在解码部分,采用级联的方法组合特征,然后通过自适应注意力模块捕捉不同尺度的变化关系,设计多尺度监督融合模块,增强深度网络融合,获得具有更高辨别能力的变化区域特征,将不同层级的输出结果与主网络的重构变化图融合形成最终的变化检测结果。该模型在LEVIR-CD和SYSU-CD变化检测数据集取得了较好的结果,F1-score分别提高了1.58%和2.17%,可更加精确识别复杂场景的变化区域,进一步减少无关因素引起的误检和漏检,且对目标地物边缘的检测更加平滑。 展开更多
关键词 深度学习 变化检测 上下文增强 自适应注意力模块 多尺度监督融合
在线阅读 下载PDF
基于边界增强的中文直播弹幕新词发现 被引量:1
13
作者 王雪瑞 刘渊 《传感器与微系统》 CSCD 2018年第7期142-146,150,共6页
针对中文直播语料具有长度简短、用语不规范、字母数字混杂等特点,使得通常的新词发现方法效果不佳的问题,在现有基于词内部结合度与边界自由度的无监督新词发现算法基础上,引入了边界增强上下文熵的概念,使其适用于通常出现于句子片段... 针对中文直播语料具有长度简短、用语不规范、字母数字混杂等特点,使得通常的新词发现方法效果不佳的问题,在现有基于词内部结合度与边界自由度的无监督新词发现算法基础上,引入了边界增强上下文熵的概念,使其适用于通常出现于句子片段边界位置的词语。在某知名直播平台的弹幕语料上进行了实验,结果表明:方法模型简洁,可有效提取新词,并能够通过调整参数适应不同规模的语料输入,且时空复杂度与执行性能良好。 展开更多
关键词 直播弹幕 新词发现 内部结合度 互信息 边界自由度 边界增强上下文
在线阅读 下载PDF
基于CS-YOLOv5s的无人机航拍图像小目标检测 被引量:8
14
作者 翁俊辉 成乐 +2 位作者 黄曼莉 隋皓 朱宏娜 《电子测量技术》 北大核心 2024年第7期157-162,共6页
无人机航拍图像存在小目标分布密集且目标尺度变化大等检测难点,本文提出一种面向无人机航拍图像小目标的跨尺度目标检测模型—CS-YOLOv5s。首先,在YOLOv5s基础上,引入小目标检测器,提高模型对小目标的捕捉能力;进一步,将最大池化分支... 无人机航拍图像存在小目标分布密集且目标尺度变化大等检测难点,本文提出一种面向无人机航拍图像小目标的跨尺度目标检测模型—CS-YOLOv5s。首先,在YOLOv5s基础上,引入小目标检测器,提高模型对小目标的捕捉能力;进一步,将最大池化分支嵌入上下文增强模块,提取并增强骨干网络尾部的深层特征,再注入PANet,实现深浅层特征有效融合和模型跨尺度检测能力的提升;同时采用SPDConv模块替换下采样卷积模块,实现无人机航拍图像中密集目标高效检测。实验表明,CS-YOLOv5s在数据集VisDrone2019达到42.0%mAP0.5,较基准模型提升9.8%,有效增强网络模型对无人机航拍图像小目标的识别能力,为无人机目标智能识别提供支撑。 展开更多
关键词 无人机航拍图像 YOLO 小目标检测器 上下文增强模块 SPDConv模块
在线阅读 下载PDF
一种基于FFA-Net改进的单幅图像去雾算法
15
作者 何钦 徐望明 +2 位作者 王义焕 罗扬 王薇 《武汉科技大学学报》 CAS 北大核心 2024年第6期448-456,共9页
雾霾会严重影响使用卷积神经网络的视觉系统对目标图像的检测和识别能力,为此本文在特征融合注意力网络FFA-Net的基础上设计和添加全局空间上下文增强(GSCE)模块和细节渐进增强(PDE)模块,进而提出一种改进型单幅图像去雾算法。GSCE模块... 雾霾会严重影响使用卷积神经网络的视觉系统对目标图像的检测和识别能力,为此本文在特征融合注意力网络FFA-Net的基础上设计和添加全局空间上下文增强(GSCE)模块和细节渐进增强(PDE)模块,进而提出一种改进型单幅图像去雾算法。GSCE模块用于增强全局空间信息,PDE模块用于逐步细化和增强图像特征,二者结合进行高效和轻量级的特征提取,弥补原模型中大量使用跳跃连接所造成的细节信息损失。改进模型分别在公共基准数据集RESIDE的室内数据和室外数据上进行训练,并分别在SOTS的室内和室外两个数据集上进行了测试。结果表明,本文算法明显超越了原FFA-Net和现有典型的单幅图像去雾算法,尤其在SOTS室内测试数据集上,单独融合GSCE模块就使得PSNR指标从36.36 dB提升到38.39 dB,在进一步使用PDE模块后PSNR指标提升到38.78 dB,算法的去雾性能得到较大提高,验证了改进策略的有效性。 展开更多
关键词 图像去雾 卷积神经网络 FFA-Net 全局空间上下文增强模块 细节渐进增强模块
在线阅读 下载PDF
基于卷积神经网络的新型爆珠缺陷检测算法 被引量:4
16
作者 胡怀中 李龙飞 李梦迪 《浙江工业大学学报》 CAS 北大核心 2022年第6期609-614,共6页
香烟爆珠包装前的缺陷检测对确保香烟生产品质具有重要意义。基于卷积神经网络的新型爆珠缺陷检测算法,可检测爆珠中的气泡、凹陷、划痕和微小拖尾这4种典型缺陷。为满足工业检测的要求,在利用Faster RCNN对小目标检测精度高优势的同时... 香烟爆珠包装前的缺陷检测对确保香烟生产品质具有重要意义。基于卷积神经网络的新型爆珠缺陷检测算法,可检测爆珠中的气泡、凹陷、划痕和微小拖尾这4种典型缺陷。为满足工业检测的要求,在利用Faster RCNN对小目标检测精度高优势的同时,对其进行轻量化改进。首先,利用深度可分离卷积网络实现特征提取,相较于标准卷积,参数量与计算量可减少约90%;然后,为降低网络参数的减少对精度的影响,利用上下文增强模块整合多尺度特征,提高检测精度;最后,选择加入二阶矩估计的Adam算法替代传统Momentum算法实现网络参数学习,网络收敛速度更快,误差更小。检测结果表明:笔者算法对4种缺陷检测的平均精度均值可达98.16%,检测速度可达36.10 pcs/s,检测精度和检测速度均能满足实时检测的要求。 展开更多
关键词 缺陷检测 Faster RCNN 深度可分离卷积 上下文增强模块 ADAM
在线阅读 下载PDF
基于多尺度语义网络的红外舰船目标检测 被引量:1
17
作者 陈初侠 丁勇 《红外技术》 CSCD 北大核心 2022年第5期529-536,共8页
为了增强舰船检测的抗干扰性能,本文提出了一种有效且稳定的单阶段舰船检测网络,该网络主要由3个模块组成:特征优化模块,特征金字塔融合模块和上下文增强模块,其中特征优化模块是提取多尺度上下文信息,并进一步细化和增强顶层特征输入特... 为了增强舰船检测的抗干扰性能,本文提出了一种有效且稳定的单阶段舰船检测网络,该网络主要由3个模块组成:特征优化模块,特征金字塔融合模块和上下文增强模块,其中特征优化模块是提取多尺度上下文信息,并进一步细化和增强顶层特征输入特性,增强弱小目标检测性能;特征金字塔融合模块能够生成表征能力更强的语义信息;上下文增强模块则是整合局部和全局特征增强网络特征表达能力,以降低复杂背景对检测性影响,平衡前景和背景的不均衡差异,消除鱼鳞波的影响。为了验证本文所提方法的有效性和鲁棒性,本文对自建的舰船数据集进行了定性定量验证。实验结果表明,相比现有最新基准对比模型,本文所提网络在自建数据集上均达到了最优性能,在不增加复杂度的情况下极大提升了检测精度。 展开更多
关键词 目标检测 红外舰船 单阶段网络 金字塔池化 上下文增强
在线阅读 下载PDF
一个基于文本输入的口语对话系统的新的实现策略 被引量:3
18
作者 刘智博 Michael Brasser +1 位作者 郑方 徐明星 《计算机科学》 CSCD 北大核心 2006年第11期205-209,共5页
口语对话系统(Spoken Dialogue Systems,SDS)现在已经越来越多地应用于实际生活之中,然而,当前对于普通人来说要开发处理英文对话的功能强大的系统通常很困难,而一些被人们提出的、不很复杂的,且能够比较容易开发SDS的方法其理解能力则... 口语对话系统(Spoken Dialogue Systems,SDS)现在已经越来越多地应用于实际生活之中,然而,当前对于普通人来说要开发处理英文对话的功能强大的系统通常很困难,而一些被人们提出的、不很复杂的,且能够比较容易开发SDS的方法其理解能力则受到了限制。在介绍并比较了以上所提到的一些方法之后,一个基于文本的自然语言的SDS工具包(被称为SDS Lite)将会被详细地介绍。我们的系统处理中文对话并使不仅是专家而且是普通人都很容易学习和开发他们自己的SDS。 展开更多
关键词 口语对话系统 SDS LITE 上下文无关增强文法 语义抽取
在线阅读 下载PDF
基于CAFPN和细化双头解耦的遥感图像目标检测 被引量:4
19
作者 熊娟 张孙杰 +1 位作者 阚亚亚 陈家豪 《应用科学学报》 CAS CSCD 北大核心 2023年第6期989-1003,共15页
针对遥感图像背景的复杂性和图中目标尺寸小、方向任意性导致漏检或错检的问题,提出了一种新颖的目标检测算法。首先,提出一种基于上下文信息增强的特征金字塔网络。在特征提取阶段,自适应融合不同感受野,获得具有丰富语义信息的特征,... 针对遥感图像背景的复杂性和图中目标尺寸小、方向任意性导致漏检或错检的问题,提出了一种新颖的目标检测算法。首先,提出一种基于上下文信息增强的特征金字塔网络。在特征提取阶段,自适应融合不同感受野,获得具有丰富语义信息的特征,减少小目标的信息流失。然后,在回归网络中,使用中心点偏移回归机制实现旋转框的检测,降低冗余锚框带来的计算复杂度。最后,结合双头网络将分类和回归特征解耦,通过注意力机制和极化函数引导的特征细化模块构建适应各自任务的重要特征,使网络能准确地检测目标。在遥感数据集DOTA、HRSC2016和UCAS_AOD上验证网络的有效性,对比于Faster RCNN算法,该算法在3个数据集上获得了8.48%、7.60%和3.10%的精度提升,实现了高性能的遥感图像目标检测。 展开更多
关键词 遥感图像 上下文信息增强 注意力机制 极化函数 特征细化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部