物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解决的关键难题之一.深度强化学习(Deep rein-forcement learning,...物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解决的关键难题之一.深度强化学习(Deep rein-forcement learning,DRL)具有强大的学习与决策能力,基于DRL的三维装箱方法(Three-dimensional bin packing method based on DRL,DRL-3DBP)已成为智能物流领域的研究热点之一.现有DRL-3DBP面对大尺寸容器3D-BPP时难以达成动作空间、计算复杂性与探索能力之间的平衡.为此,提出一种四向协同装箱(Four directional cooperative packing,FDCP)方法:两阶段策略网络接收旋转后的容器状态,生成4个方向的装箱策略;根据由4个策略采样而得的动作更新对应的4个状态,选取其中价值最大的对应动作为装箱动作.FDCP在压缩动作空间、减小计算复杂性的同时,鼓励智能体对4个方向合理装箱位置的探索.实验结果表明,FDCP在100×100大尺寸容器以及20、30、50箱子数量的装箱问题上实现了1.2%~2.9%的空间利用率提升.展开更多
目的针对冷链运输中的生鲜打包及装载优化问题,提出一种允许货物以体积恒定为前提进行尺寸变化的包装装载方案,以最大化集装箱的空间利用率。方法基于上述问题,构建非线性混合整数规划模型,为了方便CPLEX或LINGO等求解器对该非线性混合...目的针对冷链运输中的生鲜打包及装载优化问题,提出一种允许货物以体积恒定为前提进行尺寸变化的包装装载方案,以最大化集装箱的空间利用率。方法基于上述问题,构建非线性混合整数规划模型,为了方便CPLEX或LINGO等求解器对该非线性混合整数规划模型进行求解,采用一种分段线性化方法,将该非线性模型进行线性化处理。由于所研究问题具有NP-hard属性,无论是CPLEX还是LINGO都无法有效求解大规模算例,因此设计一种有效结合遗传算法与深度、底部、左部方向优先装载(Deepest bottom left with fill,DBLF)的算法。结果大小规模算例实验验证结果表明,混合遗传算法能够在合理时间内获得最优解或近似最优解。结论所提出的可变尺寸包装方案有效提高了装载率,有益于客户和物流公司。展开更多
三维单集装箱装载问题(Three-dimensional Single Container Loading Problem,3D-SCLP)因其在制造业和物流业中有着广泛的应用,已成为最优化领域中最经典的工程问题之一。然而,目前的优化方案主要从算法优化改进与局部约束调整等角度考...三维单集装箱装载问题(Three-dimensional Single Container Loading Problem,3D-SCLP)因其在制造业和物流业中有着广泛的应用,已成为最优化领域中最经典的工程问题之一。然而,目前的优化方案主要从算法优化改进与局部约束调整等角度考虑,没有充分考虑实际装载过程中的复杂约束需求,如重量限制、负载平衡、货物稳定性、堆叠约束以及人因工程因素,导致现有方法理论装载率虽高,但实用性低。在充分考虑实际多重复杂约束的基础上,提出了一种基于天鹰座优化器的改进元启发式算法。该算法基于种群优化策略,并将差分变异和高斯扰动与潜在点策略相结合,实现复杂约束情况下的快速收敛。在中等规模工业实例数据上进行了算法验证,与传统启发式优化方法相比,所提方法能够解决中等规模复杂约束下的三维装箱优化问题,在实际空间利用率、生成效率等方面优于现有的解决方案。对物流运输行业减少人工成本,实现装箱标准化与智能化具有重要意义。展开更多
文摘物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解决的关键难题之一.深度强化学习(Deep rein-forcement learning,DRL)具有强大的学习与决策能力,基于DRL的三维装箱方法(Three-dimensional bin packing method based on DRL,DRL-3DBP)已成为智能物流领域的研究热点之一.现有DRL-3DBP面对大尺寸容器3D-BPP时难以达成动作空间、计算复杂性与探索能力之间的平衡.为此,提出一种四向协同装箱(Four directional cooperative packing,FDCP)方法:两阶段策略网络接收旋转后的容器状态,生成4个方向的装箱策略;根据由4个策略采样而得的动作更新对应的4个状态,选取其中价值最大的对应动作为装箱动作.FDCP在压缩动作空间、减小计算复杂性的同时,鼓励智能体对4个方向合理装箱位置的探索.实验结果表明,FDCP在100×100大尺寸容器以及20、30、50箱子数量的装箱问题上实现了1.2%~2.9%的空间利用率提升.
文摘目的针对冷链运输中的生鲜打包及装载优化问题,提出一种允许货物以体积恒定为前提进行尺寸变化的包装装载方案,以最大化集装箱的空间利用率。方法基于上述问题,构建非线性混合整数规划模型,为了方便CPLEX或LINGO等求解器对该非线性混合整数规划模型进行求解,采用一种分段线性化方法,将该非线性模型进行线性化处理。由于所研究问题具有NP-hard属性,无论是CPLEX还是LINGO都无法有效求解大规模算例,因此设计一种有效结合遗传算法与深度、底部、左部方向优先装载(Deepest bottom left with fill,DBLF)的算法。结果大小规模算例实验验证结果表明,混合遗传算法能够在合理时间内获得最优解或近似最优解。结论所提出的可变尺寸包装方案有效提高了装载率,有益于客户和物流公司。
文摘三维单集装箱装载问题(Three-dimensional Single Container Loading Problem,3D-SCLP)因其在制造业和物流业中有着广泛的应用,已成为最优化领域中最经典的工程问题之一。然而,目前的优化方案主要从算法优化改进与局部约束调整等角度考虑,没有充分考虑实际装载过程中的复杂约束需求,如重量限制、负载平衡、货物稳定性、堆叠约束以及人因工程因素,导致现有方法理论装载率虽高,但实用性低。在充分考虑实际多重复杂约束的基础上,提出了一种基于天鹰座优化器的改进元启发式算法。该算法基于种群优化策略,并将差分变异和高斯扰动与潜在点策略相结合,实现复杂约束情况下的快速收敛。在中等规模工业实例数据上进行了算法验证,与传统启发式优化方法相比,所提方法能够解决中等规模复杂约束下的三维装箱优化问题,在实际空间利用率、生成效率等方面优于现有的解决方案。对物流运输行业减少人工成本,实现装箱标准化与智能化具有重要意义。