压水型反应堆(pressurized water reactor,PWR)系统主管道热段内冷却剂的温度和流量,直接反映了核功率和堆芯换热状态,是反应堆功率控制和安全保护的核心参数。为全面掌握华龙一号反应堆上腔室及热段内冷却剂流-热耦合场分布及演变规律...压水型反应堆(pressurized water reactor,PWR)系统主管道热段内冷却剂的温度和流量,直接反映了核功率和堆芯换热状态,是反应堆功率控制和安全保护的核心参数。为全面掌握华龙一号反应堆上腔室及热段内冷却剂流-热耦合场分布及演变规律,为核心参数测控提供参考,基于有限元分析(finite element method,FEA)方法,对上腔室及热段冷却剂流域进行了计算流体力学(computational fluid dynamics,CFD)数值模拟。首先建立了合理简化后的华龙一号(Hualong One)反应堆上腔室及相连热段的3D几何结构模型。随后对模型计算域进行了离散化网格划分和网格敏感性分析。最后通过计算,获得了冷却剂非等温流动的稳态特性解,流量、温度与相关设计估算值、实际测量值的相对误差均小于2%。对稳态特性研究表明,高、低温冷却剂在上腔室垂直内壁附近的不充分换热导致热段入口冷却剂温度分布不均,存在14.0~16.3℃的温差。随冷却剂沿轴向流动,冷却剂温度场分布和流场分布均逐渐趋于均匀和稳定,且是热段内低温冷却剂的流动主导了冷却剂温度分布的变化。展开更多
电缆在非开挖顶管敷设处排列紧密且埋深较大,大大加剧了电缆间的电磁耦合和热耦合,因此该区域往往成为限制载流量的瓶颈段,需重点关注。为准确计算110 k V忠田变—湄洲变线路中双回路电缆在顶管敷设段的载流量,建立电磁—热—流耦合场...电缆在非开挖顶管敷设处排列紧密且埋深较大,大大加剧了电缆间的电磁耦合和热耦合,因此该区域往往成为限制载流量的瓶颈段,需重点关注。为准确计算110 k V忠田变—湄洲变线路中双回路电缆在顶管敷设段的载流量,建立电磁—热—流耦合场有限元模型,将电磁场、温度场及排管内空气流速场耦合求解,得到给定负荷电流下的电磁损耗分布、管内空气流速分布和温度分布特性,并利用迭代法计算了单通道敷设方案和双通道敷设方案下的载流量。结果表明,由于回路之间的相互电磁和散热影响得到抑制,采用双通道敷设方案可提高载流量30%以上,故在路径通道允许的情况下应采用双通道敷设方案。展开更多
文摘压水型反应堆(pressurized water reactor,PWR)系统主管道热段内冷却剂的温度和流量,直接反映了核功率和堆芯换热状态,是反应堆功率控制和安全保护的核心参数。为全面掌握华龙一号反应堆上腔室及热段内冷却剂流-热耦合场分布及演变规律,为核心参数测控提供参考,基于有限元分析(finite element method,FEA)方法,对上腔室及热段冷却剂流域进行了计算流体力学(computational fluid dynamics,CFD)数值模拟。首先建立了合理简化后的华龙一号(Hualong One)反应堆上腔室及相连热段的3D几何结构模型。随后对模型计算域进行了离散化网格划分和网格敏感性分析。最后通过计算,获得了冷却剂非等温流动的稳态特性解,流量、温度与相关设计估算值、实际测量值的相对误差均小于2%。对稳态特性研究表明,高、低温冷却剂在上腔室垂直内壁附近的不充分换热导致热段入口冷却剂温度分布不均,存在14.0~16.3℃的温差。随冷却剂沿轴向流动,冷却剂温度场分布和流场分布均逐渐趋于均匀和稳定,且是热段内低温冷却剂的流动主导了冷却剂温度分布的变化。
文摘电缆在非开挖顶管敷设处排列紧密且埋深较大,大大加剧了电缆间的电磁耦合和热耦合,因此该区域往往成为限制载流量的瓶颈段,需重点关注。为准确计算110 k V忠田变—湄洲变线路中双回路电缆在顶管敷设段的载流量,建立电磁—热—流耦合场有限元模型,将电磁场、温度场及排管内空气流速场耦合求解,得到给定负荷电流下的电磁损耗分布、管内空气流速分布和温度分布特性,并利用迭代法计算了单通道敷设方案和双通道敷设方案下的载流量。结果表明,由于回路之间的相互电磁和散热影响得到抑制,采用双通道敷设方案可提高载流量30%以上,故在路径通道允许的情况下应采用双通道敷设方案。