硅通孔(Through Silicon Via,TSV)技术是现今主流的三维芯片上下层互联技术之一.将从三维片上网络(Network on Chip,NoC)垂直通道的功能细分入手:按照TSV重要性的不同划分成组,对不同的TSV组配置不同的冗余配置比.在现有的"包-连...硅通孔(Through Silicon Via,TSV)技术是现今主流的三维芯片上下层互联技术之一.将从三维片上网络(Network on Chip,NoC)垂直通道的功能细分入手:按照TSV重要性的不同划分成组,对不同的TSV组配置不同的冗余配置比.在现有的"包-连接电路"(PCC)平台上完成的实验显示,该冗余容错方案保证了在TSV总数达到十万量级时,成品率依然高达99.999 99%的同时,面积开销与非功能细分方案相比优化了35%以上.展开更多
针对三维片上网络(3D No C)中硅通孔(TSV)的特殊结构,提出了一种3D No C延迟上界优化方法,通过全局均衡硅通孔负载,降低全局业务流的延迟上界.建立3D No C的网格通信模型,搜索网络中所有业务流的可行路径,提出一种基于度的冲突矩阵,求...针对三维片上网络(3D No C)中硅通孔(TSV)的特殊结构,提出了一种3D No C延迟上界优化方法,通过全局均衡硅通孔负载,降低全局业务流的延迟上界.建立3D No C的网格通信模型,搜索网络中所有业务流的可行路径,提出一种基于度的冲突矩阵,求出目标子流路径的TSV冲突系数,按照路径中TSV冲突系数的大小把目标流流量分配到部分最优路径上.实验结果表明,基于度的冲突矩阵可以有效减少存储空间,将存储复杂度从O(n2)降低到O(n),并且可以清晰直观地表现出业务流在网络中的冲突情况.采用硅通孔负载全局均衡的3D No C延迟上界优化方法,目标业务流的延迟上界得到了显著优化,最大的优化效果可将延迟上界降低58.9%.展开更多
文摘针对三维片上网络(3D No C)中硅通孔(TSV)的特殊结构,提出了一种3D No C延迟上界优化方法,通过全局均衡硅通孔负载,降低全局业务流的延迟上界.建立3D No C的网格通信模型,搜索网络中所有业务流的可行路径,提出一种基于度的冲突矩阵,求出目标子流路径的TSV冲突系数,按照路径中TSV冲突系数的大小把目标流流量分配到部分最优路径上.实验结果表明,基于度的冲突矩阵可以有效减少存储空间,将存储复杂度从O(n2)降低到O(n),并且可以清晰直观地表现出业务流在网络中的冲突情况.采用硅通孔负载全局均衡的3D No C延迟上界优化方法,目标业务流的延迟上界得到了显著优化,最大的优化效果可将延迟上界降低58.9%.