期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SMA-CNN-GRU-Attention组合模型的矿区地表三维形变预测
1
作者 彭毅博 杨维芳 +3 位作者 闫香蓉 高墨通 侯宇豪 张德龙 《测绘通报》 北大核心 2025年第3期8-14,20,共8页
矿区地表形变监测与预测研究对于矿区安全生产与灾害防治预警具有重要意义。现有研究偏向于对地面垂直沉降的监测与预测,对三维方向形变预测研究较少。针对以上问题,本文基于小基线集合成孔径雷达干涉测量(SBAS-InSAR)技术对金川矿区西... 矿区地表形变监测与预测研究对于矿区安全生产与灾害防治预警具有重要意义。现有研究偏向于对地面垂直沉降的监测与预测,对三维方向形变预测研究较少。针对以上问题,本文基于小基线集合成孔径雷达干涉测量(SBAS-InSAR)技术对金川矿区西二采区进行多轨道数据地表形变监测,并提出一种加入黏菌优化算法(SMA)的SMA-CNN-GRU-Attention组合网络模型,利用该模型对该区域地表三维形变进行预测研究。结果表明,加入SMA进行最优参数求解后,垂直向预测结果的平均绝对误差(MAE)与均方根误差(RMSE)较CNN-GRU网络模型分别降低30%和46%;南北向预测结果的MAE与RMSE分别降低37%、39%;东西向预测结果的精度提升较小,MAE、RMSE分别降低6%和10%。SMA算法不仅可以加快模型最优参数选取效率,还能较大程度地提升CNN-GRU-Attention模型预测性能。SMA-CNN-GRU-Attention多特征输入预测模型相较其他预测模型具有优越性,为地表三维形变预测研究提供了一种有效方法。 展开更多
关键词 SBAS-InSAR 形变监测 三维形变预测 SMA优化算法 组合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部