期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度三维形变的单张3D人脸重建算法
1
作者 杜召彬 崔霄 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第5期559-565,共7页
三维形变模型(3DMM)作为人脸重建的重要方式,在3D建模、图像合成等领域有着广泛的应用.由于受训练数据类型、数量以及主成分等因素影响,3DMM存在过约束的现象,不能提供足够的灵活性来表示高频变形.本文将三维形变模型嵌入到深度神经网络... 三维形变模型(3DMM)作为人脸重建的重要方式,在3D建模、图像合成等领域有着广泛的应用.由于受训练数据类型、数量以及主成分等因素影响,3DMM存在过约束的现象,不能提供足够的灵活性来表示高频变形.本文将三维形变模型嵌入到深度神经网络中,为提升3D人脸重建的表示能力提供了新的思路.为了提升网络学习效率,本文构设了一种双通路神经网络,实现了在全局路径和局部路径之间的平衡.通过在学习目标和网络结构两方面改进非线性3DMM,提出了一种比线性或以往的非线性模型更能捕捉到更高层次细节的模型.算法对比与仿真实验表明,本文算法在3D人脸重建上的归一化平均误差更低,所生成的3D人脸模型鲁棒性好、重构准确,实现了较好的3D人脸重建性能. 展开更多
关键词 3D人脸重建 三维形变模型 深度神经网络 损失函数
在线阅读 下载PDF
基于卷积神经网络的单幅图像三维人脸重建 被引量:4
2
作者 王育坚 李深圳 +1 位作者 韩静园 谭卫雄 《传感器与微系统》 CSCD 北大核心 2021年第6期52-56,共5页
利用单幅二维图像进行三维人脸重建是图像处理研究领域的热点问题。受深度卷积神经网络(CNN)和三维形变模型(3DMM)的启发,提出一种采用CNN回归3DMM形状和表情参数的方法,进行三维人脸重建。在CNN模型VGG-16的基础上设计一种VGG-BN的改... 利用单幅二维图像进行三维人脸重建是图像处理研究领域的热点问题。受深度卷积神经网络(CNN)和三维形变模型(3DMM)的启发,提出一种采用CNN回归3DMM形状和表情参数的方法,进行三维人脸重建。在CNN模型VGG-16的基础上设计一种VGG-BN的改进网络模型,通过在每个卷积层后加入批归一化层,优化网络模型性能;并采用迁移学习方法,将预训练模型引入到VGG-BN网络的训练中。将改进的网络模型在300W-LP数据集上训练,在AFLW2000-3D数据集上测试,并和现有方法进行了对比分析。实验结果表明:改进的网络模型在人脸重建的准确性和泛化性方面都有一定的改善,重建人脸的形状和表情效果较好。 展开更多
关键词 三维人脸重建 三维形变模型(3dmm) 卷积神经网络(CNN) 单幅图像
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部