针对无线传感器网络中近似四面体内点三维(APIT—3D)定位算法存在的问题,提出一种基于球切割的APIT(APIT—SC)定位算法。该算法改善在节点分布不均匀时定位精度和定位覆盖率差的问题,用体积规则减少PIT—3D测试中出现Out To In和In To ...针对无线传感器网络中近似四面体内点三维(APIT—3D)定位算法存在的问题,提出一种基于球切割的APIT(APIT—SC)定位算法。该算法改善在节点分布不均匀时定位精度和定位覆盖率差的问题,用体积规则减少PIT—3D测试中出现Out To In和In To Out错误。以球切割法和轮回选择法改善算法性能,降低计算复杂度。仿真实验表明:500个节点随机部署在100 m×100 m×100 m的理想网络环境下,APIT—SC算法定位覆盖率可达91%,定位误差在23%左右。与APIT—3D算法相比,降低了计算复杂度,提高了定位精度。展开更多
On the eve of the occurrence of geological hazards,part of the rock and soil body begins to burst,rub,and fracture,generating infrasound signals propagating outward.3D advanced positioning of the landslide has remaine...On the eve of the occurrence of geological hazards,part of the rock and soil body begins to burst,rub,and fracture,generating infrasound signals propagating outward.3D advanced positioning of the landslide has remained unsolved,which is important for disaster prevention.Through the Fourier transform and Hankel transform of the wave equation in cylindrical coordinates,this work established a three-dimensional axisymmetric sound field model based on normal waves,and designed a 4-element helix triangular pyramid array with vertical and horizontal sampling capabilities.Based on this,the three-dimensional matching localization algorithm of infrasound for geological hazards is proposed.Applying the algorithm to the infrasound signal localization of rock and soil layers,it was found that the helix triangular pyramid array can achieve accurate estimation of depth and distance with a smaller number of array elements than the traditional array,and may overcome the azimuth symmetry ambiguity.This study shows the application prospects of this method for predicting geohazards position several hours in advance.展开更多
文摘针对无线传感器网络中近似四面体内点三维(APIT—3D)定位算法存在的问题,提出一种基于球切割的APIT(APIT—SC)定位算法。该算法改善在节点分布不均匀时定位精度和定位覆盖率差的问题,用体积规则减少PIT—3D测试中出现Out To In和In To Out错误。以球切割法和轮回选择法改善算法性能,降低计算复杂度。仿真实验表明:500个节点随机部署在100 m×100 m×100 m的理想网络环境下,APIT—SC算法定位覆盖率可达91%,定位误差在23%左右。与APIT—3D算法相比,降低了计算复杂度,提高了定位精度。
基金Project(41877219)supported by the National Natural Science Foundation of ChinaProject(cstc2019jcyj-msxmX0585)supported by Natural Science Foundation of Chongqing,ChinaProject(KJ-2018016)supported by Science and Technology Project of Planning and Natural Resources Bureau of Chongqing Government,China。
文摘On the eve of the occurrence of geological hazards,part of the rock and soil body begins to burst,rub,and fracture,generating infrasound signals propagating outward.3D advanced positioning of the landslide has remained unsolved,which is important for disaster prevention.Through the Fourier transform and Hankel transform of the wave equation in cylindrical coordinates,this work established a three-dimensional axisymmetric sound field model based on normal waves,and designed a 4-element helix triangular pyramid array with vertical and horizontal sampling capabilities.Based on this,the three-dimensional matching localization algorithm of infrasound for geological hazards is proposed.Applying the algorithm to the infrasound signal localization of rock and soil layers,it was found that the helix triangular pyramid array can achieve accurate estimation of depth and distance with a smaller number of array elements than the traditional array,and may overcome the azimuth symmetry ambiguity.This study shows the application prospects of this method for predicting geohazards position several hours in advance.