个性化三维(three-dimensional,3D)头部模型在头相关传输函数(head-related transfer function,HRTF)和虚拟听觉重放中有着重要应用。光学扫描是获取3D头部模型的常用方法,但不同光学扫描方式的误差及其对HRTF的影响尚不明确。文章以自...个性化三维(three-dimensional,3D)头部模型在头相关传输函数(head-related transfer function,HRTF)和虚拟听觉重放中有着重要应用。光学扫描是获取3D头部模型的常用方法,但不同光学扫描方式的误差及其对HRTF的影响尚不明确。文章以自主设计的3D头部模型为参照模型MO(基准),并将3D打印制作的模型作为扫描对象。选取三款代表性光学扫描设备(手持式红色激光扫描仪HandySCAN 300、手持式白光发光二极管扫描仪Reeyee Pro 2X、红外激光iPhone12手机)扫描得到对应的模型M_(H),M_(R)和M_(I)。为评价新采集模型曲面精度,对比了模型间图形偏差的色阶图和偏差距离均方根(root mean square,RMS),进一步分析模型精度对HRTF数据的影响,对比了模型间的HRTF谱误差。结果表明,图形偏差主要集中在耳廓局部细节,HRTF谱误差主要出现在高频。相较而言,模型M_(H)与M_(O)最为接近,曲面误差基本在±0.40 mm以内,超过3.0 dB的HRTF谱误差仅出现在8 kHz以上的频段,且这种误差只在少数空间方向中观察到。模型M_(R)和M_(I)相比于M_(O)的曲面误差分别达到约−0.90~1.90 mm和−1.20~3.20 mm,8 kHz以上HRTF谱误差在大多数方向均超过3.0 dB。相关研究为3D头部扫描方式选用提供了参考依据。展开更多
爆炸引起的颅脑损伤已经成为现代战场单兵的主要致伤形式,而相关的致伤机理尚未完全阐明。本文中,针对头部在爆炸冲击波作用下的动态响应及相关致伤机理进行了数值模拟研究。首先,基于颅脑的核磁共振切片建立了人体头部三维数值模型,该...爆炸引起的颅脑损伤已经成为现代战场单兵的主要致伤形式,而相关的致伤机理尚未完全阐明。本文中,针对头部在爆炸冲击波作用下的动态响应及相关致伤机理进行了数值模拟研究。首先,基于颅脑的核磁共振切片建立了人体头部三维数值模型,该模型真实地反映了颅脑的生理特征与细节构造;利用该模型对人体头部碰撞实验进行数值模拟,模拟结果与实验结果吻合良好,验证了头部模型的有效性。在此基础上,基于欧拉-拉格朗日耦合(EulerLagrangian coupling method,CEL)方法发展了爆炸冲击波-头部流固耦合模型,对头部受到爆炸冲击波正面冲击工况进行了数值模拟,分别从流场压力分布、脑组织压力、颅骨变形与加速度等方面对头部动态响应过程进行了分析。爆炸冲击波峰值压力在流固耦合作用下增大为入射波的3.5倍,致使受到直接冲击处的颅骨与脑组织发生高频振动,相应的振动频率高达8 k Hz,这与碰撞载荷下的脑组织动态响应是完全不同的。同时,该处颅骨的局部弯曲变形会沿着颅骨进行"传播",影响着整个颅骨的变化构型,从而决定了脑组织压力与损伤的演化过程。展开更多
文摘个性化三维(three-dimensional,3D)头部模型在头相关传输函数(head-related transfer function,HRTF)和虚拟听觉重放中有着重要应用。光学扫描是获取3D头部模型的常用方法,但不同光学扫描方式的误差及其对HRTF的影响尚不明确。文章以自主设计的3D头部模型为参照模型MO(基准),并将3D打印制作的模型作为扫描对象。选取三款代表性光学扫描设备(手持式红色激光扫描仪HandySCAN 300、手持式白光发光二极管扫描仪Reeyee Pro 2X、红外激光iPhone12手机)扫描得到对应的模型M_(H),M_(R)和M_(I)。为评价新采集模型曲面精度,对比了模型间图形偏差的色阶图和偏差距离均方根(root mean square,RMS),进一步分析模型精度对HRTF数据的影响,对比了模型间的HRTF谱误差。结果表明,图形偏差主要集中在耳廓局部细节,HRTF谱误差主要出现在高频。相较而言,模型M_(H)与M_(O)最为接近,曲面误差基本在±0.40 mm以内,超过3.0 dB的HRTF谱误差仅出现在8 kHz以上的频段,且这种误差只在少数空间方向中观察到。模型M_(R)和M_(I)相比于M_(O)的曲面误差分别达到约−0.90~1.90 mm和−1.20~3.20 mm,8 kHz以上HRTF谱误差在大多数方向均超过3.0 dB。相关研究为3D头部扫描方式选用提供了参考依据。
文摘爆炸引起的颅脑损伤已经成为现代战场单兵的主要致伤形式,而相关的致伤机理尚未完全阐明。本文中,针对头部在爆炸冲击波作用下的动态响应及相关致伤机理进行了数值模拟研究。首先,基于颅脑的核磁共振切片建立了人体头部三维数值模型,该模型真实地反映了颅脑的生理特征与细节构造;利用该模型对人体头部碰撞实验进行数值模拟,模拟结果与实验结果吻合良好,验证了头部模型的有效性。在此基础上,基于欧拉-拉格朗日耦合(EulerLagrangian coupling method,CEL)方法发展了爆炸冲击波-头部流固耦合模型,对头部受到爆炸冲击波正面冲击工况进行了数值模拟,分别从流场压力分布、脑组织压力、颅骨变形与加速度等方面对头部动态响应过程进行了分析。爆炸冲击波峰值压力在流固耦合作用下增大为入射波的3.5倍,致使受到直接冲击处的颅骨与脑组织发生高频振动,相应的振动频率高达8 k Hz,这与碰撞载荷下的脑组织动态响应是完全不同的。同时,该处颅骨的局部弯曲变形会沿着颅骨进行"传播",影响着整个颅骨的变化构型,从而决定了脑组织压力与损伤的演化过程。