期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
三维卷积神经网络方法改进及其应用综述
1
作者 李泽慧 张琳 山显英 《计算机工程与应用》 北大核心 2025年第3期48-61,共14页
三维卷积神经网络作为一种深度神经网络,在计算机视觉领域,特别是视频动作识别方面展现了优异的效果。然而三维卷积神经网络仍存在一些问题,针对这些问题,对现有的基于三维卷积的视频动作识别改进方法进行了总结和分析。在轻量化、特征... 三维卷积神经网络作为一种深度神经网络,在计算机视觉领域,特别是视频动作识别方面展现了优异的效果。然而三维卷积神经网络仍存在一些问题,针对这些问题,对现有的基于三维卷积的视频动作识别改进方法进行了总结和分析。在轻量化、特征提取、计算效率、组合模型等方面对三维卷积神经网络的改进进行归纳,并介绍了三维卷积神经网络的实际应用,总结了流行的数据集,并对这些改进方法的实验结果进行了比较和分析。展望了视频动作识别未来的发展方向。 展开更多
关键词 三维卷积神经网络(3DCNN) 行为识别 深度学习
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
2
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度图 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于卷积神经网络的单幅图像三维人脸重建 被引量:4
3
作者 王育坚 李深圳 +1 位作者 韩静园 谭卫雄 《传感器与微系统》 CSCD 北大核心 2021年第6期52-56,共5页
利用单幅二维图像进行三维人脸重建是图像处理研究领域的热点问题。受深度卷积神经网络(CNN)和三维形变模型(3DMM)的启发,提出一种采用CNN回归3DMM形状和表情参数的方法,进行三维人脸重建。在CNN模型VGG-16的基础上设计一种VGG-BN的改... 利用单幅二维图像进行三维人脸重建是图像处理研究领域的热点问题。受深度卷积神经网络(CNN)和三维形变模型(3DMM)的启发,提出一种采用CNN回归3DMM形状和表情参数的方法,进行三维人脸重建。在CNN模型VGG-16的基础上设计一种VGG-BN的改进网络模型,通过在每个卷积层后加入批归一化层,优化网络模型性能;并采用迁移学习方法,将预训练模型引入到VGG-BN网络的训练中。将改进的网络模型在300W-LP数据集上训练,在AFLW2000-3D数据集上测试,并和现有方法进行了对比分析。实验结果表明:改进的网络模型在人脸重建的准确性和泛化性方面都有一定的改善,重建人脸的形状和表情效果较好。 展开更多
关键词 三维人脸重建 三维形变模型(3DMM) 卷积神经网络(CNN) 单幅图像
在线阅读 下载PDF
快速3D-CNN结合深度可分离卷积对高光谱图像分类 被引量:2
4
作者 王燕 梁琦 《计算机科学与探索》 CSCD 北大核心 2022年第12期2860-2869,共10页
针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成... 针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。 展开更多
关键词 高光谱图像分类 空谱特征提取 三维卷积神经网络(3d-cnn) 深度可分离卷积(DSC) 深度学习
在线阅读 下载PDF
基于高光谱图像和3D-CNN的苹果多品质参数无损检测 被引量:15
5
作者 王浩云 李晓凡 +2 位作者 李亦白 孙云晓 徐焕良 《南京农业大学学报》 CAS CSCD 北大核心 2020年第1期178-185,共8页
[目的]为解决水果品质无损检测中成本、效率、精度问题,提出了一种基于高光谱图像和三维卷积神经网络(3D-CNN)的苹果高光谱多品质参数同时检测方法。[方法]使用高光谱成像系统获取400~1000 nm波段的苹果样本的高光谱反射图像并使用S-G... [目的]为解决水果品质无损检测中成本、效率、精度问题,提出了一种基于高光谱图像和三维卷积神经网络(3D-CNN)的苹果高光谱多品质参数同时检测方法。[方法]使用高光谱成像系统获取400~1000 nm波段的苹果样本的高光谱反射图像并使用S-G平滑法对原始图像进行去噪处理,在此基础上,对采集到的高光谱图像通过多感兴趣位置的选取以及间隔波段抽取重组的方法进行样本扩充,再利用三维卷积神经网络建立样本扩充后的苹果高光谱图像与苹果糖度、硬度、含水量的多任务学习模型,通过该模型实现对苹果的糖度、硬度、含水量等品质参数的无损检测。[结果]采集245个苹果的高光谱图像及其对应的品质参数信息,通过样本扩充的方法将原始数据集扩充至9800个样本后进行建模和验证。结果表明:本算法建立的苹果糖度、硬度、水分的分类模型,在糖度类间隔为1°Brix、硬度类间隔为0.5 kg·cm-2、含水量类间隔为10%的情况下,糖度、硬度、水分的预测准确率分别为93.97%、92.29%和93.36%,回归模型糖度、硬度和水分的相关系数最高分别达到0.827、0.775和0.862,比最优的传统算法分别提高15.0%、17.0%和17.2%。[结论]本算法能够较准确实现苹果高光谱多品质参数同时检测,且相对传统方法预测精度有较大提升。 展开更多
关键词 苹果 高光谱 多品质参数 无损检测 三维卷积神经网络(3d-cnn)
在线阅读 下载PDF
联合LiDAR、高光谱数据及3D-CNN方法的树种分类 被引量:6
6
作者 毛英伍 郭颖 +2 位作者 张王菲 苏勇 关塬 《林业科学》 EI CAS CSCD 北大核心 2023年第3期73-83,共11页
【目的】探究三维卷积神经网络(3D-CNN)在高光谱数据支持的树种分类中的有效网络构建方式,以提高树种分类精度。【方法】以美国加利福尼亚州内华达山脉南部为研究区,LiDAR数据获取的森林冠层高(CHM)进行单木分割并以此为补充建立样本,... 【目的】探究三维卷积神经网络(3D-CNN)在高光谱数据支持的树种分类中的有效网络构建方式,以提高树种分类精度。【方法】以美国加利福尼亚州内华达山脉南部为研究区,LiDAR数据获取的森林冠层高(CHM)进行单木分割并以此为补充建立样本,改进一种结构更简单、分类精度更高且无需对高光谱数据进行预处理的3D-CNN网络结构用于森林树种识别。【结果】相较于常规机器学习分类方法【支持向量机(SVM),随机森林(RF)】、传统二维卷积神经网络模型(2D-CNN)及最新多光谱分辨率三维卷积神经网络(MSR 3D-CNN)模型,本研究提出的3D-CNN模型对树种总体分类精度为99.79%,平均交并比(MIoU)为99.53%。与SVM和RF分类结果相比,本研究构建的3D-CNN模型总体分类精度提高5%左右,且具有对树种边界提取更加准确、椒盐现象更少发生的特点;与2D-CNN相比,总体分类精度提高10%左右,MIoU提高7%左右;与MSR 3D-CNN相比,总体精度相差不大,但在训练和测试过程中,本模型耗时远远小于MSR 3D-CNN模型。【结论】本研究改进的3D-CNN模型结构能够高效对原始高光谱影像进行树种分类并制图,可有效提高树种分类的精度。 展开更多
关键词 高光谱 LIDAR 卷积神经网络 树种分类 3d-cnn
在线阅读 下载PDF
基于LC3D的摔倒行为识别算法
7
作者 查凯文 朱华生 +1 位作者 李伟 李舒宁 《计算机应用与软件》 北大核心 2023年第9期193-198,共6页
针对传统的三维卷积神经网络(C3D)用于摔倒行为识别时对特征的提取不明显,而传统的长短时记忆网络(LSTM)存在梯度消失的问题,提出一种新的基于时序三维卷积网络(LC3D)的摔倒行为识别算法。该算法同步获取视频和骨架两组数据,将视频数据... 针对传统的三维卷积神经网络(C3D)用于摔倒行为识别时对特征的提取不明显,而传统的长短时记忆网络(LSTM)存在梯度消失的问题,提出一种新的基于时序三维卷积网络(LC3D)的摔倒行为识别算法。该算法同步获取视频和骨架两组数据,将视频数据和骨架数据分别输入至改进后的C3D网络和LSTM网络进行训练并提取摔倒行为的C3D模型和LSTM模型;通过Stacking算法将两个模型进行融合得到LC3D模型;利用LC3D模型对摔倒行为进行识别。实验结果表明,使用LC3D网络识别摔倒行为比使用传统三维卷积网络和长短时记忆网络算法的准确率更高。 展开更多
关键词 摔倒行为识别 三维卷积神经网络 长短时记忆网络 LC3D
在线阅读 下载PDF
基于块编码特点的压缩视频质量增强算法 被引量:1
8
作者 于海 杨磊 +4 位作者 高阳 刘枫琪 刘鹏宇 孙萱 张悦 《北京工业大学学报》 CAS CSCD 北大核心 2024年第9期1069-1076,共8页
针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network, 3D-CNN)的非对齐压缩视频质量增强... 针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network, 3D-CNN)的非对齐压缩视频质量增强算法。实验结果表明:相较于高效视频编码(high efficiency video coding, HEVC)标准H.265,所提算法在低延迟(low delay, LD)配置下且量化参数(quantization parameter, QP)为37时,峰值信噪比(peak signal-to-noise ratio, PSNR)提升了0.465 2 dB;相较于数据压缩会议(data compression conference, DCC)中提出的多帧引导的注意力网络(multi-frame guided attention network, MGANet)方法,该算法PSNR的增长量提升了15.1%。 展开更多
关键词 视频编码 高效视频编码(high efficiency video coding HEVC) 压缩视频质量增强 深度学习 卷积神经网络(convolutional neural network CNN) 三维卷积神经网络(3D convolutional neural network 3d-cnn)
在线阅读 下载PDF
煤矿探水卸杆动作识别研究 被引量:6
9
作者 党伟超 姚远 +2 位作者 白尚旺 高改梅 吴喆峰 《工矿自动化》 北大核心 2020年第7期107-112,共6页
针对煤矿井下探水作业监工人员通过观看视频来监控卸杆作业的方式存在效率低下且极易出错的问题,提出利用三维卷积神经网络(3DCNN)模型对探水作业中的卸杆动作进行识别。3DCNN模型使用3D卷积层自动完成动作特征提取,通过3D池化层对运动... 针对煤矿井下探水作业监工人员通过观看视频来监控卸杆作业的方式存在效率低下且极易出错的问题,提出利用三维卷积神经网络(3DCNN)模型对探水作业中的卸杆动作进行识别。3DCNN模型使用3D卷积层自动完成动作特征提取,通过3D池化层对运动特征进行降维,通过Softmax分类处理来识别卸杆动作,并使用批量归一化层提高模型的收敛速度和识别准确率。采用3DCNN模型对卸杆动作进行识别时,首先对数据集进行预处理,从每段视频中均匀抽取几帧图像作为某动作的代表,并降低分辨率;然后采用训练集对3DCNN模型进行训练,并保存训练好的权重文件;最后采用训练好的3DCNN模型对测试集进行测试,得出分类结果。实验结果表明,设置采样帧数为10帧、分辨率为32×32、学习率为0.0001,3DCNN模型对卸杆动作的识别准确率最高可达98.86%。 展开更多
关键词 煤矿防治水 煤矿探水 卸杆动作识别 三维卷积神经网络 3DCNN 批量归一化层
在线阅读 下载PDF
基于目标检测与动作识别算法的电梯危险行为监测 被引量:5
10
作者 毛晓东 《机械设计与制造》 北大核心 2023年第11期144-148,155,共6页
为实时识别电梯厢内的蹦跳、扒电梯门、踹电梯门、打架、摔倒等危险行为,避免电梯安全事故的发生,提出了利用YOLOv3目标检测算法及三维卷积神经网络(3DCNN)进行电梯危险行为监测的方法。首先建立了包括6类电梯行为的目标检测数据集及动... 为实时识别电梯厢内的蹦跳、扒电梯门、踹电梯门、打架、摔倒等危险行为,避免电梯安全事故的发生,提出了利用YOLOv3目标检测算法及三维卷积神经网络(3DCNN)进行电梯危险行为监测的方法。首先建立了包括6类电梯行为的目标检测数据集及动作识别数据集;然后训练了YOLOv3目标检测算法以进行电梯乘客检测,检测准确率可达96.6%,检测速度可达32fps/s;最后设计了三维卷积神经网络模型,并在动作识别数据集上进行训练,最后在测试集上对设计的三维卷积神经网络进行测试,结果表明,设计的三维卷积神经网络模型对电梯危险行为的识别准确率可达到88.3%,识别速度可达306fps/s。 展开更多
关键词 电梯安全事故 危险行为监测 YOLOv3 三维卷积神经网络
在线阅读 下载PDF
基于骨架信息的民族舞蹈典型动作识别 被引量:2
11
作者 秦晴 王卫星 +1 位作者 刘清华 蒙德庆 《计算机工程与应用》 CSCD 北大核心 2023年第5期281-288,共8页
民族舞蹈是中国重要的非物质文化遗产,在动作识别技术应用十分广泛的环境下,对于民族舞蹈文化保护和传承的研究领域还比较空白。为了更好地保护和传承少数民族舞蹈,筛选了5类少数民族舞蹈典型动作片段,结合深度摄像机开发了动作数据采... 民族舞蹈是中国重要的非物质文化遗产,在动作识别技术应用十分广泛的环境下,对于民族舞蹈文化保护和传承的研究领域还比较空白。为了更好地保护和传承少数民族舞蹈,筛选了5类少数民族舞蹈典型动作片段,结合深度摄像机开发了动作数据采集系统,通过该系统采集民族舞蹈动作骨架信息,构建了民族舞蹈典型动作数据集,使用改进的三维卷积神经网络(3D CNNs)模型对民族舞蹈动作骨架序列进行了识别与分类,并且与其他经典动作识别方法进行了对比,该方法在实验中获得了95%的识别率。研究结果表明,该民族舞蹈数据集构建方法合理,识别模型对民族舞蹈分类有良好的性能,对民族舞蹈动作进行了有效的记录和保存,为民族舞蹈数字化保护提供一种新的方式。 展开更多
关键词 民族舞蹈 动作识别 骨架信息 三维卷积神经网络(3D CNNs)
在线阅读 下载PDF
基于多级特征和全局上下文的纵膈淋巴结分割算法
12
作者 徐少伟 秦品乐 +3 位作者 曾建朝 赵致楷 高媛 王丽芳 《计算机科学》 CSCD 北大核心 2021年第S01期95-100,117,共7页
针对纵膈淋巴结尺度差异大、正负样本不均衡、软组织和肺肿瘤易混淆的问题,提出一个新颖的用于纵膈淋巴结分割的多级特征和全局上下文分割网络。为了解决纵膈淋巴结正负样本不均衡、与纵膈器官和软组织相似的问题,通过医学先验提取纵膈... 针对纵膈淋巴结尺度差异大、正负样本不均衡、软组织和肺肿瘤易混淆的问题,提出一个新颖的用于纵膈淋巴结分割的多级特征和全局上下文分割网络。为了解决纵膈淋巴结正负样本不均衡、与纵膈器官和软组织相似的问题,通过医学先验提取纵膈间隙,减少了纵膈器官干扰。为了解决肿大纵膈淋巴结与肺肿瘤相似、淋巴结出现区域分散的问题,设计了全局上下文模块,通过计算全局上下文依赖,大大提升了网络对淋巴结和背景的分类能力。为了解决纵膈淋巴结尺度差异大的问题,设计了特征融合模块,大大增强了网络对小淋巴结的分割精度。实验表明,所提方法在纵膈淋巴结分割任务中达到了76.92%的准确率,79.65%的召回率和76.08%的dice分数,在准确率、召回率和dice分数上均明显优于当前用于纵膈淋巴结分割的其他算法。 展开更多
关键词 纵膈淋巴结分割 自注意力机制 计算机辅助诊断 3D卷积神经网络 三维医学影像
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部