由于2D人脸识别率容易受到姿态、表情、光照以及自身遮挡影响的问题,这一定程度上阻碍了2D人脸识别技术的鲁棒性与发展。而3D人脸数据提供了在3D人脸领域很有前景的特征描述,也有很大潜力提高人脸识别技术的识别率。针对二维人脸识别中...由于2D人脸识别率容易受到姿态、表情、光照以及自身遮挡影响的问题,这一定程度上阻碍了2D人脸识别技术的鲁棒性与发展。而3D人脸数据提供了在3D人脸领域很有前景的特征描述,也有很大潜力提高人脸识别技术的识别率。针对二维人脸识别中的局限性,先对三维人脸数据进行预处理,人脸分割、平滑去燥等,提出了一种改进的三维人脸分割的方法。改进了三维人脸进行特征提取,使用平均曲率,高斯曲率,增加了协方差,拉普拉斯算子等描述符,且融合其最佳的描述符组合作为三维人脸的特征,计算基于网格局部二值模式(Mesh-LBP)进行提取特征,最后使用支持向量机(SVM)进行三维人脸的分类识别。通过在中国科学院自动化研究所(CASIA)的提供的数据集CASIA 3D face v1分别对高斯曲率、最大最小曲率、平均曲率、协方差、形状指数进行实验,其中平均曲率获得最高识别率93. 17%。实验结果表明,该方法有效地减少了受光照、姿态等变化的影响,且具有较好的鲁棒性和较高的识别率。展开更多
针对三维人脸识别,提出了一种基于面部等测地轮廓线并结合局部特征和整体特征的人脸识别方法.首先,在人脸中提取到鼻尖点等测地距离的点组成等测地轮廓线来表征人脸面部曲面;然后,根据重采样后轮廓线上点的邻域信息提取局部特征,根据轮...针对三维人脸识别,提出了一种基于面部等测地轮廓线并结合局部特征和整体特征的人脸识别方法.首先,在人脸中提取到鼻尖点等测地距离的点组成等测地轮廓线来表征人脸面部曲面;然后,根据重采样后轮廓线上点的邻域信息提取局部特征,根据轮廓线的整体形状信息提取人脸整体特征;最后,分别利用比较局部特征和整体特征,将比较结果在决策级融合,给出最终识别结果.所提算法在FRGC(face recognition grand challenge)v2.0数据库上进行测试,测试结果表明,特征融合后的识别性能优于单一特征的识别率,且具有较好的表情鲁棒性.展开更多
提出了一种基于等测地轮廓线的局部描述符来识别三维人脸。首先对三维人脸数据进行预处理,得到统一的人脸区域并进行姿态归一化;然后根据测地距离提取到鼻尖点相同距离的点组成等测地轮廓线,对轮廓线进行重采样,并对轮廓线上每个采样点...提出了一种基于等测地轮廓线的局部描述符来识别三维人脸。首先对三维人脸数据进行预处理,得到统一的人脸区域并进行姿态归一化;然后根据测地距离提取到鼻尖点相同距离的点组成等测地轮廓线,对轮廓线进行重采样,并对轮廓线上每个采样点的邻域提取局部描述符;最后在建立测试人脸和库集人脸的点对应关系后进行局部描述符的加权融合和比较,给出最终识别结果。算法在FRGC(face recognition grand challenge)v2.0数据库上进行测试,实验结果表明该方法具有较好的识别性能。展开更多
文摘由于2D人脸识别率容易受到姿态、表情、光照以及自身遮挡影响的问题,这一定程度上阻碍了2D人脸识别技术的鲁棒性与发展。而3D人脸数据提供了在3D人脸领域很有前景的特征描述,也有很大潜力提高人脸识别技术的识别率。针对二维人脸识别中的局限性,先对三维人脸数据进行预处理,人脸分割、平滑去燥等,提出了一种改进的三维人脸分割的方法。改进了三维人脸进行特征提取,使用平均曲率,高斯曲率,增加了协方差,拉普拉斯算子等描述符,且融合其最佳的描述符组合作为三维人脸的特征,计算基于网格局部二值模式(Mesh-LBP)进行提取特征,最后使用支持向量机(SVM)进行三维人脸的分类识别。通过在中国科学院自动化研究所(CASIA)的提供的数据集CASIA 3D face v1分别对高斯曲率、最大最小曲率、平均曲率、协方差、形状指数进行实验,其中平均曲率获得最高识别率93. 17%。实验结果表明,该方法有效地减少了受光照、姿态等变化的影响,且具有较好的鲁棒性和较高的识别率。
文摘针对三维人脸识别,提出了一种基于面部等测地轮廓线并结合局部特征和整体特征的人脸识别方法.首先,在人脸中提取到鼻尖点等测地距离的点组成等测地轮廓线来表征人脸面部曲面;然后,根据重采样后轮廓线上点的邻域信息提取局部特征,根据轮廓线的整体形状信息提取人脸整体特征;最后,分别利用比较局部特征和整体特征,将比较结果在决策级融合,给出最终识别结果.所提算法在FRGC(face recognition grand challenge)v2.0数据库上进行测试,测试结果表明,特征融合后的识别性能优于单一特征的识别率,且具有较好的表情鲁棒性.
文摘提出了一种基于等测地轮廓线的局部描述符来识别三维人脸。首先对三维人脸数据进行预处理,得到统一的人脸区域并进行姿态归一化;然后根据测地距离提取到鼻尖点相同距离的点组成等测地轮廓线,对轮廓线进行重采样,并对轮廓线上每个采样点的邻域提取局部描述符;最后在建立测试人脸和库集人脸的点对应关系后进行局部描述符的加权融合和比较,给出最终识别结果。算法在FRGC(face recognition grand challenge)v2.0数据库上进行测试,实验结果表明该方法具有较好的识别性能。