期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CNN-BiLSTM-Attention的特高压三端混合直流输电线路故障区域判别研究
1
作者
陈仕龙
宋国雄
+3 位作者
邓健
毕贵红
杨毅
李国辉
《电机与控制学报》
北大核心
2025年第7期132-141,共10页
针对现有混合三端直流输电系统线路故障定位难度大、准确率低以及阀值整定繁杂的问题,提出一种基于CNN-BiLSTM-Attention的故障区域判别方法。首先,分析LCC侧、T区、MMC2侧的故障区域特征,指出不同区域的故障特征具有各自的独特性。然后...
针对现有混合三端直流输电系统线路故障定位难度大、准确率低以及阀值整定繁杂的问题,提出一种基于CNN-BiLSTM-Attention的故障区域判别方法。首先,分析LCC侧、T区、MMC2侧的故障区域特征,指出不同区域的故障特征具有各自的独特性。然后,采集T区左右4个保护装置故障时刻的暂态电流、电压数据得到功率突变量数据,通过卷积神经网络(CNN)提取局部特征,利用双向长短期记忆网络(BiLSTM)学习更为丰富的故障特征,使模型更好地理解和利用所提取的故障特征,并利用注意力机制(AM)对所提取的故障特征信息进行加权,筛选有助于故障区域判别的故障特征从而提高模型性能。最后,通过仿真验证所提方法能够迅速且精确地识别故障区域,既保证了较高的准确度,又具备良好的过渡电阻适应性和抗噪声干扰能力。
展开更多
关键词
三端混合柔性直流
暂态功率
卷积神经网络
双向长短期记忆网络
注意力机制
故障区域判别
在线阅读
下载PDF
职称材料
题名
基于CNN-BiLSTM-Attention的特高压三端混合直流输电线路故障区域判别研究
1
作者
陈仕龙
宋国雄
邓健
毕贵红
杨毅
李国辉
机构
昆明理工大学电力工程学院
三峡新能源海上风电运维江苏有限公司
出处
《电机与控制学报》
北大核心
2025年第7期132-141,共10页
基金
国家自然科学基金(52067009)。
文摘
针对现有混合三端直流输电系统线路故障定位难度大、准确率低以及阀值整定繁杂的问题,提出一种基于CNN-BiLSTM-Attention的故障区域判别方法。首先,分析LCC侧、T区、MMC2侧的故障区域特征,指出不同区域的故障特征具有各自的独特性。然后,采集T区左右4个保护装置故障时刻的暂态电流、电压数据得到功率突变量数据,通过卷积神经网络(CNN)提取局部特征,利用双向长短期记忆网络(BiLSTM)学习更为丰富的故障特征,使模型更好地理解和利用所提取的故障特征,并利用注意力机制(AM)对所提取的故障特征信息进行加权,筛选有助于故障区域判别的故障特征从而提高模型性能。最后,通过仿真验证所提方法能够迅速且精确地识别故障区域,既保证了较高的准确度,又具备良好的过渡电阻适应性和抗噪声干扰能力。
关键词
三端混合柔性直流
暂态功率
卷积神经网络
双向长短期记忆网络
注意力机制
故障区域判别
Keywords
three-terminal hybrid flexible DC
transient power
convolutional neural networks
bi-directional long short term memory
attention mechanism
fault area identification
分类号
TM721 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CNN-BiLSTM-Attention的特高压三端混合直流输电线路故障区域判别研究
陈仕龙
宋国雄
邓健
毕贵红
杨毅
李国辉
《电机与控制学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部