期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CNN-BiLSTM-Attention的特高压三端混合直流输电线路故障区域判别研究
1
作者 陈仕龙 宋国雄 +3 位作者 邓健 毕贵红 杨毅 李国辉 《电机与控制学报》 北大核心 2025年第7期132-141,共10页
针对现有混合三端直流输电系统线路故障定位难度大、准确率低以及阀值整定繁杂的问题,提出一种基于CNN-BiLSTM-Attention的故障区域判别方法。首先,分析LCC侧、T区、MMC2侧的故障区域特征,指出不同区域的故障特征具有各自的独特性。然后... 针对现有混合三端直流输电系统线路故障定位难度大、准确率低以及阀值整定繁杂的问题,提出一种基于CNN-BiLSTM-Attention的故障区域判别方法。首先,分析LCC侧、T区、MMC2侧的故障区域特征,指出不同区域的故障特征具有各自的独特性。然后,采集T区左右4个保护装置故障时刻的暂态电流、电压数据得到功率突变量数据,通过卷积神经网络(CNN)提取局部特征,利用双向长短期记忆网络(BiLSTM)学习更为丰富的故障特征,使模型更好地理解和利用所提取的故障特征,并利用注意力机制(AM)对所提取的故障特征信息进行加权,筛选有助于故障区域判别的故障特征从而提高模型性能。最后,通过仿真验证所提方法能够迅速且精确地识别故障区域,既保证了较高的准确度,又具备良好的过渡电阻适应性和抗噪声干扰能力。 展开更多
关键词 三端混合柔性直流 暂态功率 卷积神经网络 双向长短期记忆网络 注意力机制 故障区域判别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部