期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ECA和三分支卷积融合网络的脑电信号解码研究 被引量:1
1
作者 周凯 艾尔肯·亥木都拉 《现代电子技术》 北大核心 2024年第23期89-97,共9页
基于运动想象脑电信号的脑机接口系统可以实现大脑和外部设备的交互,能够帮助残疾人控制辅助设备,提高他们的生活质量。然而,有限的脑电信号解码性能限制了脑机接口产业的大规模发展。文中提出一种基于高效通道注意力(ECA)和三分支卷积... 基于运动想象脑电信号的脑机接口系统可以实现大脑和外部设备的交互,能够帮助残疾人控制辅助设备,提高他们的生活质量。然而,有限的脑电信号解码性能限制了脑机接口产业的大规模发展。文中提出一种基于高效通道注意力(ECA)和三分支卷积融合网络的ECA-TBCFNet模型用于基于脑电图的运动想象(MI-EEG)信号解码。ECA模块可自动捕捉脑电信号中的跨通道交互,三分支卷积融合网络能够多尺度地提取信号中的时空特征。ECA-TBCFNet模型在BCI竞赛IV-2a数据集上的四分类任务中取得了83.3%的准确率和0.78的kappa系数;此外,在Physionet MI-EEG数据集上两分类和四分类任务中,ECA-TBCFNet模型的准确率分别为87.87%和69.01%。结果表明,提出的ECA-TBCFNet模型可以有效提高运动想象脑电信号的识别准确率,并具有较高的鲁棒性。 展开更多
关键词 脑机接口 脑电图 运动想象 高效通道注意力 三分支卷积神经网络 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部