Three new reactive ternary terbium complexes were synthesized with the first ligand of thenoyltri-(fluoroacetone) and the reactive secondary ligand such as maleic anhydride, undecenoic acid, oleic acid, and characteri...Three new reactive ternary terbium complexes were synthesized with the first ligand of thenoyltri-(fluoroacetone) and the reactive secondary ligand such as maleic anhydride, undecenoic acid, oleic acid, and characterized by means of elemental analysis, ethylenediamine tetraacetic acid titrimetric method, Fourier transform infrared and ultraviolet spectroscopies. And the luminescent properties of the ternary terbium complexes were investigated. The results show that the ternary terbium complexes possess much higher luminescent intensity than the binary complex of terbium with thenoyltrifluoroacetone, and the synergy ability sequence of the three reactive ligands is as follows: undecenoic acid>oleic acid>maleic anhydride. Because the ternary terbium complexes contain reactive (ligands) that can be copolymerized with other monomers, a new way for the synthesis of the bonding-type rare earth polymer functional materials with excellent luminescent properties is provided.展开更多
文摘Three new reactive ternary terbium complexes were synthesized with the first ligand of thenoyltri-(fluoroacetone) and the reactive secondary ligand such as maleic anhydride, undecenoic acid, oleic acid, and characterized by means of elemental analysis, ethylenediamine tetraacetic acid titrimetric method, Fourier transform infrared and ultraviolet spectroscopies. And the luminescent properties of the ternary terbium complexes were investigated. The results show that the ternary terbium complexes possess much higher luminescent intensity than the binary complex of terbium with thenoyltrifluoroacetone, and the synergy ability sequence of the three reactive ligands is as follows: undecenoic acid>oleic acid>maleic anhydride. Because the ternary terbium complexes contain reactive (ligands) that can be copolymerized with other monomers, a new way for the synthesis of the bonding-type rare earth polymer functional materials with excellent luminescent properties is provided.