期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于BIRCH聚类算法的高维传感器数据异常检测 被引量:12
1
作者 赵娇 《传感技术学报》 CAS CSCD 北大核心 2022年第12期1686-1690,共5页
海量高维传感器数据受网络环境扰动较大,导致其异常值检测难度较大,提出基于BIRCH聚类算法的高维传感器数据异常检测方案。推算节点对应的一阶差分信号序列,信号矢量通过多跳路由传输至网关节点,将空间相关性强的传感器节点划分在同一簇... 海量高维传感器数据受网络环境扰动较大,导致其异常值检测难度较大,提出基于BIRCH聚类算法的高维传感器数据异常检测方案。推算节点对应的一阶差分信号序列,信号矢量通过多跳路由传输至网关节点,将空间相关性强的传感器节点划分在同一簇内,采集完整的高维传感器数据;利用分割点预设得到传感器数据特征属性候选分割点,挑选信息增益最大的点为最佳分割点;将传感器数据序列的中位数异常看作异常检测判定条件,利用BIRCH聚类算法中的聚类特征和聚类特征树计算节点特征属性,将数据聚类结果拟作球形簇状架构,输出高维传感器数据序列中的异常数据。仿真结果证明,该方法的异常节点检出率在95%以上,误报率为0.35%,异常检测耗时在1.5 min以内。 展开更多
关键词 高维传感器 异常检测 BIRCH聚类 一阶差分信号 归一化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部