期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进的共享最近邻聚类算法 被引量:3
1
作者 李霞 蒋盛益 《计算机工程与应用》 CSCD 北大核心 2011年第8期138-142,共5页
聚类是一种无监督的机器学习方法,其任务是发现数据中的自然簇。共享最近邻聚类算法(SNN)在处理大小不同、形状不同以及密度不同的数据集上具有很好的聚类效果,但该算法还存在以下不足:(1)时间复杂度为O(n2),不适合处理大规模数据集;(2... 聚类是一种无监督的机器学习方法,其任务是发现数据中的自然簇。共享最近邻聚类算法(SNN)在处理大小不同、形状不同以及密度不同的数据集上具有很好的聚类效果,但该算法还存在以下不足:(1)时间复杂度为O(n2),不适合处理大规模数据集;(2)没有明确给出参数阈值的简单指导性操作方法;(3)只能处理数值型属性数据集。对共享最近邻算法进行改进,使其能够处理混合属性数据集,并给出参数阈值的简单选择方法,改进后算法运行时间与数据集大小成近似线性关系,适用于大规模高维数据集。在真实数据集和人造数据集上的实验结果表明,提出的改进算法是有效可行的。 展开更多
关键词 共享最近邻算法 一趟聚类算法 大规模数据集
在线阅读 下载PDF
基于投票机制的融合聚类算法 被引量:7
2
作者 蒋盛益 《小型微型计算机系统》 CSCD 北大核心 2007年第2期306-309,共4页
以一趟聚类算法作为划分数据的基本算法,讨论聚类融合问题.通过重复使用一趟聚类算法划分数据,并随机选择阈值和数据输入顺序,得到不同的聚类结果,将这些聚类结果映射为模式间的关联矩阵,在关联矩阵上使用投票机制获得最终的数据划分.... 以一趟聚类算法作为划分数据的基本算法,讨论聚类融合问题.通过重复使用一趟聚类算法划分数据,并随机选择阈值和数据输入顺序,得到不同的聚类结果,将这些聚类结果映射为模式间的关联矩阵,在关联矩阵上使用投票机制获得最终的数据划分.在真实数据集和人造数据集上检验了提出的聚类融合算法,并与相关聚类算法进行了对比,实验结果表明,文中提出的算法是有效可行的. 展开更多
关键词 分析 一趟聚类算法 融合 投票机制
在线阅读 下载PDF
Chameleon算法的改进 被引量:10
3
作者 蒋盛益 庞观松 张黎莎 《小型微型计算机系统》 CSCD 北大核心 2010年第8期1643-1646,共4页
结合Chameleon算法可以发现高质量的任意形状、大小和密度的自然簇及一趟聚类算法快速高效的特点,研究可以处理混合属性的高效聚类算法.首先简单改进Chameleon算法,使之可以处理含分类属性的数据;进而提出一种两阶段聚类算法.第一阶段... 结合Chameleon算法可以发现高质量的任意形状、大小和密度的自然簇及一趟聚类算法快速高效的特点,研究可以处理混合属性的高效聚类算法.首先简单改进Chameleon算法,使之可以处理含分类属性的数据;进而提出一种两阶段聚类算法.第一阶段使用一趟聚类算法对数据集进行初始划分,第二阶段利用改进的Chameleon算法归并初始划分而得到最终聚类.在真实数据集和人造数据集上的实验结果表明,提出的两阶段聚类算法是有效可行的. 展开更多
关键词 一趟聚类算法 基于图的算法 任意形状簇
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部