期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于一致性训练的半监督虚假招聘广告检测模型 被引量:4
1
作者 王瑞琪 纪淑娟 +1 位作者 曹宁 郭亚杰 《计算机应用》 CSCD 北大核心 2023年第9期2932-2939,共8页
虚假招聘广告的泛滥不仅会损害求职者的合法权益,还会扰乱正常的就业秩序,造成求职者极差的用户体验。为了有效检测出虚假招聘广告,提出一种基于一致性训练的半监督虚假招聘广告检测模型(SSC)。首先,对所有数据应用一致性正则项提升模... 虚假招聘广告的泛滥不仅会损害求职者的合法权益,还会扰乱正常的就业秩序,造成求职者极差的用户体验。为了有效检测出虚假招聘广告,提出一种基于一致性训练的半监督虚假招聘广告检测模型(SSC)。首先,对所有数据应用一致性正则项提升模型的性能;然后,通过联合训练的方式整合有监督损失和无监督损失得到半监督损失;最后,使用半监督损失对模型进行优化。在两个真实数据集EMSCAD(EMployment SCam Aegean Dataset)和IMDB(Internet Movie DataBase)上的实验结果表明,SSC在标签数据仅为20时取得了最好的检测效果,准确率与现有先进的半监督学习模型UDA(Unsupervised Data Augmentation)相比提升了2.2和2.8个百分点,与深度学习模型BERT(Bidirectional Encoder Representations from Transformers)相比提升了3.4和11.7个百分点,同时还具有较好的可拓展性。 展开更多
关键词 虚假信息检测 半监督学习 网络招聘 虚假招聘广告 一致性训练
在线阅读 下载PDF
基于插值一致性的半监督三维目标分类算法
2
作者 叶书函 詹瑞 陈训敏 《计算机应用》 CSCD 北大核心 2020年第S02期42-47,共6页
针对有大量无标签数据与少量有标签数据的三维目标分类任务,提出了一种基于插值一致性的半监督三维目标分类算法。采用插值一致性训练(ICT)方式,使少量有标签样本经过分类网络得到的预测值更接近真实值,并激励无标记点处插值的预测与这... 针对有大量无标签数据与少量有标签数据的三维目标分类任务,提出了一种基于插值一致性的半监督三维目标分类算法。采用插值一致性训练(ICT)方式,使少量有标签样本经过分类网络得到的预测值更接近真实值,并激励无标记点处插值的预测与这些点处预测的插值趋于一致。该训练方式使得决策边界移至数据分布的低密度区域,进而提高小样本数据情形下的分类效果。在公开数据集ModelNet10上进行了分类效果测试,识别精度达到93.92%。实验结果表明,该算法能够充分利用少量标签数据与大量无标签数据,有效地完成识别分类任务。 展开更多
关键词 插值一致性训练 三维目标分类 半监督学习 计算机视觉 标签数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部