期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
消除互补性争议的多视图聚类算法 被引量:1
1
作者 赵玉涵 陈松灿 《计算机研究与发展》 北大核心 2025年第5期1216-1225,共10页
多视图聚类旨在利用来自不同视图的异构信息发现底层数据结构,并划分样本所属类别.一致性和互补性是影响多视图聚类性能的2个关键要素.一致性强调不同视图间的语义相似性,互补性则强调每个视图内特有信息的相互补充.目前对一致性研究已... 多视图聚类旨在利用来自不同视图的异构信息发现底层数据结构,并划分样本所属类别.一致性和互补性是影响多视图聚类性能的2个关键要素.一致性强调不同视图间的语义相似性,互补性则强调每个视图内特有信息的相互补充.目前对一致性研究已相对深入,但对互补性研究存在争议,其中一些方法认为一致性和互补性能互助,但仅将二者约束至同一特征空间中实际上造成了二者的冲突.而另一些方法则据此认为应丢弃互补信息,但这又造成信息浪费.直觉上互补性应该存在,贡献在于发现了现有方法没有足够洞悉并触及到互补性的本质,即一致性和互补性并非独立而是相互耦合,结果导致冲突.受此启发,通过解耦实现了2种信息的分离,具体使它们位于不同的特征子空间而非现在的同一特征空间,从而发展出了一种兼顾一致性和互补性的多视图聚类算法,在有效提取出互补信息的同时避免二者冲突.在标准数据集上的对比实验验证了所提算法的有效性. 展开更多
关键词 多视图聚类 一致性和互补性 表示解耦 对比学习 伪标记
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部