期刊文献+
共找到229篇文章
< 1 2 12 >
每页显示 20 50 100
ISW32离心泵深度一维卷积神经网络故障诊断 被引量:1
1
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
在线阅读 下载PDF
基于一维卷积神经网络与自编码算法的松属物种鉴别机制
2
作者 陈冬英 翁伟雄 +1 位作者 陈培亮 魏建崇 《生态学报》 北大核心 2025年第5期2401-2411,共11页
松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并... 松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并结合一维连续型卷积神经网络(1D⁃CS⁃CNN)与自编码技术的松属物种检测机制。使用更高效率的连续型结构替代传统1D⁃CNN模型中隐含层结构,并针对松属NIRS数据适应性改进为1D⁃CS⁃CNN模型,使其可直接应用于一维NIRS数据。结合自编码器的重构误差设计一种考虑未知类别的松属物种鉴别方法,通过待测样本的自编码重构误差来解决卷积神经网络置信度过高的问题,将修正的置信度与预先设定的阈值进行比较,判断该样本是否为未知品种。实验结果表明,1D⁃CS⁃CNN训练集与测试集准确率均达到近100%,损失值收敛为0.015,改进后的1D⁃CS⁃CNN模型识别速度更快;同时,自编码模型对未知类别松属检测机制识别率为99%。实验结果证明,该模型可快速高效分类出不同松属物种,同时检测出松属新物种。 展开更多
关键词 松属物种 近红外光谱(NIRS) 自编码 一维连续卷积神经网络(1D⁃CS⁃CNN) 鉴别
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
3
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测 被引量:1
4
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
基于一维卷积神经网络的雷达个体识别算法 被引量:1
5
作者 杨孟璋 农丽萍 +1 位作者 李然 王俊义 《计算机工程与设计》 北大核心 2025年第5期1281-1288,共8页
为解决利用长序列雷达信号对雷达辐射源个体进行分类识别的问题,提出一种融合注意力机制和残差的一维卷积深度神经网络(1CDNN)模型,利用一维卷积从原始长序列雷达信号中直接提取特征,减少模型的参数量。引入注意力机制帮助模型学习利用... 为解决利用长序列雷达信号对雷达辐射源个体进行分类识别的问题,提出一种融合注意力机制和残差的一维卷积深度神经网络(1CDNN)模型,利用一维卷积从原始长序列雷达信号中直接提取特征,减少模型的参数量。引入注意力机制帮助模型学习利用全局信息选择关键特征,提高模型的分类识别精度。引入残差使得模型在缓解梯度消失的同时更容易进行优化和训练。实验结果表明,所提模型在实际采集数据集上具有结构简单、训练难度低、分类识别精度高和收敛速度快的优点。 展开更多
关键词 雷达辐射源识别 长序列雷达信号 深度学习 端到端 一维卷积神经网络 注意力机制 残差学习
在线阅读 下载PDF
基于一维卷积神经网络的家庭用户特征识别方法
6
作者 许继和 朱亮 +2 位作者 晏依 周佳楠 温和 《中国测试》 北大核心 2025年第6期25-30,66,共7页
智能电能表提供用户的用电量数据,可以反应用户的用电特征,从而为家庭用户特征识别提供基础。为实现家庭用户特征识别,该文研究基于智能电能表用电数据的家庭用户特征识别分析方法,设计一种适合于智能电能表用电时间序列数据的一维卷积... 智能电能表提供用户的用电量数据,可以反应用户的用电特征,从而为家庭用户特征识别提供基础。为实现家庭用户特征识别,该文研究基于智能电能表用电数据的家庭用户特征识别分析方法,设计一种适合于智能电能表用电时间序列数据的一维卷积神经网络模型,以智能电能表采集的用户用电数据(一维数据序列)为输入,在网络的前两个卷积层之后去掉池化层以实现早期特征的保存,实现对家庭用户特征的准确分类。为证明本文提出方法的有效性,该文在公开数据集上进行实验,实验表明,该文的方法在多个家庭用户特征分类上获得55%~78%的准确率。 展开更多
关键词 深度学习 一维卷积神经网络 分类 家庭用户特征 智能电能表
在线阅读 下载PDF
一维卷积神经网络的自编码癫痫发作异常检测模型 被引量:2
7
作者 欧嘉志 詹长安 杨丰 《南方医科大学学报》 CAS CSCD 北大核心 2024年第9期1796-1804,共9页
目的将一维卷积神经网络(1DCNN)作为自编码模型的特征提取网络,利用1DCNN对头皮脑电信号(EEG)局部特征的感知能力来提高自编码模型(AE)在低维特征空间的表达能力,提出一种简单高效的癫痫异常检测模型。方法癫痫发作后会出现标志性的EEG... 目的将一维卷积神经网络(1DCNN)作为自编码模型的特征提取网络,利用1DCNN对头皮脑电信号(EEG)局部特征的感知能力来提高自编码模型(AE)在低维特征空间的表达能力,提出一种简单高效的癫痫异常检测模型。方法癫痫发作后会出现标志性的EEG波形变化,通过1DCNN的局部特征提取能力,捕捉正常信号的局部信息;利用正常数据训练自编码器,学习正常EEG数据在低维特征空间的表达,作为异常数据的癫痫EEG数据会脱离正常数据的低维特征空间,从而自编码模型无法有效地实现癫痫异常信号的重构;首先将输入和输出的差值作为异常分数值,然后通过ROC曲线的最优平衡点确定阈值,超过阈值的EEG信号被诊断为癫痫发作数据。利用公开数据集CHB-MIT脑电数据集和TUH脑电数据集,评估本文所提出的1DCNN-AE癫痫检测模型。结果从AUC值和癫痫事件检测两个任务来看,1DCNN-AE模型在患者平均水平下的AUC值分别达到了CHB-MIT的0.890和TUH的0.686,癫痫检测率达到了0.974和0.893,其结果优于最新癫痫异常检测模型LSTM-VAE和模型GRU-VAE。对于模型参数量而言,与LSTM-VAE的47.4M和GRU-VAE的36.9M等模型参数量相比,1DCNN模型的参数量Params达到了58.5M,处于同一个量级;但1DCNN-AE模型计算量FLOPs为0.377G,远远小于LSTM-VAE的21.6G和GRU-VAE的16.2G。结论1DCNN的自编码模型能有效地实现癫痫发作异常检测。 展开更多
关键词 自编码 深度学习 癫痫检测 异常检测 一维卷积神经网络
在线阅读 下载PDF
基于二维卷积神经网络的结构加速度数据异常检测研究
8
作者 麻胜兰 钟建坤 +1 位作者 刘昱昊 郑翔 《建筑科学与工程学报》 北大核心 2025年第1期112-120,共9页
为提高结构加速度数据异常检测的效率和准确率,提出基于二维卷积神经网络(2D-CNN)的结构加速度数据异常检测方法。通过二维桁架数值模型验证了所提方法的有效性,并研究了2D-CNN卷积层数和加速度噪声水平对数据异常检测效果的影响。结果... 为提高结构加速度数据异常检测的效率和准确率,提出基于二维卷积神经网络(2D-CNN)的结构加速度数据异常检测方法。通过二维桁架数值模型验证了所提方法的有效性,并研究了2D-CNN卷积层数和加速度噪声水平对数据异常检测效果的影响。结果表明:提出的结构加速度数据异常检测方法能快速准确区分加速度数据异常类型,异常检测的准确率可达97%以上;对于包含信息复杂、数据规模大的样本,采用4层以上的2D-CNN有助于提高加速度数据异常检测的准确率,采用5层卷积层的2D-CNN对数据异常辨识精度可达98%;当加速度信噪比大于1时,数据异常检测准确率均在90%以上,当加速度信噪比为10时,准确率在97%以上,所提方法具有良好的容噪性和鲁棒性;采用2D-CNN的数据异常检测方法可为传感器网络的有效运行提供技术支持。 展开更多
关键词 结构健康监测 卷积神经网络 桁架结构 深度学习 加速度 数据异常检测
在线阅读 下载PDF
基于深度卷积自编码器和多尺度残差收缩网络的滚动轴承寿命状态识别 被引量:1
9
作者 潘雪娇 董绍江 +2 位作者 周存芳 肖家丰 宋锴 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期124-132,共9页
针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷... 针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷积自编码器中,实现轴承寿命状态特征的自动提取与表达,并基于多维尺度分析(MDS)算法约简寿命状态特征获得低维特征,然后计算低维特征空间内样本间的欧几里得距离(ED),即为轴承性能衰退评估指标;其次,为全面提取轴承性能衰退特征,提出了改进的多尺度残差收缩网络识别模型,并开发了ReLU与DropBlock正则化相结合的新激活策略增强模型的抗噪性;最后,将所提方法及对比方法应用于轴承全寿命实验数据。实验结果表明:笔者提出的性能衰退评估指标能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的改进的多尺度残差收缩网络识别模型在S SNR=-4~6 dB环境中平均识别正确率为91.75%,能够准确识别轴承寿命状态,验证了方法的实用性以及有效性。 展开更多
关键词 车辆与机电工程 深度卷积自编码 性能衰退指标 多尺度残差收缩网络 寿命状态识别
在线阅读 下载PDF
卷积循环神经网络的高光谱图像解混方法 被引量:2
10
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码 卷积长短期记忆网络 深度光谱分区
在线阅读 下载PDF
面向高分辨率图像传输的CNN网络编码方案研究
11
作者 刘娜 杨颜博 +2 位作者 张嘉伟 李宝山 马建峰 《西安电子科技大学学报》 北大核心 2025年第2期225-238,共14页
网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码... 网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码方案对高维度空间信息的捕捉能力不足,带来较大的通信及计算开销。为此,文中提出采用二维卷积神经网络(CNN)对各网络节点的编解码器进行参数化设计的联合源的深度学习网络编码方案,通过CNN捕捉深层空间结构信息并降低网络节点的计算复杂度。在信源节点,通过卷积层运算实现对传输数据的降维处理,提升数据的传输速率;在中间节点,接收来自两个信源的数据并通过CNN编码压缩至单个信道传输;在信宿节点,对接收到的数据利用CNN进行升维解码而恢复出原始图像。实验表明,在不同信道带宽占用比和信道噪声水平下,该方案在峰值信噪比和结构相似度上展现出优良的解码性能。 展开更多
关键词 网络编码 深度学习 卷积神经网络 高分辨率图像 图像通信
在线阅读 下载PDF
基于卷积神经网络的高层建筑智能控制算法研究 被引量:1
12
作者 刘康生 涂建维 +1 位作者 张家瑞 李召 《重庆大学学报》 北大核心 2025年第1期66-75,共10页
浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题。为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑... 浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题。为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑智能控制算法,并完成高精度网络模型训练和1D-CNN数据特征可视化;以20层benchmark模型为对象,研究了不同工况下1D-CNN深度学习智能控制算法的减震效果,并与BP(back propagation,BP)和RBF(radial basis function,RBF)等浅层学习进行对比。结果表明,1D-CNN凭借一维卷积和池化特性,可自动提取数据深层次特征并对海量数据进行降维处理;在外界激励作用下,1D-CNN控制器加速度和位移最高减震率分别为69.0%和55.6%,控制性能远高于BP和RBF;改变激励作用后,3种控制器控制性能均有所降低,但1D-CNN性能降幅最小且减震率最高,说明1D-CNN具备更好的泛化性能。 展开更多
关键词 深度学习 一维卷积神经网络 智能控制 数据特征可视化 泛化性能
在线阅读 下载PDF
基于近红外光谱数据的一维卷积神经网络模型研究 被引量:9
13
作者 唐杰 罗彦波 +6 位作者 李翔宇 陈云璨 王鹏 卢天 纪晓波 庞永强 朱立军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期731-736,共6页
近红外光谱技术已被广泛应用于各种检测行业,但传统方法难以汇集光谱关键信息,导致模型预测误差较大。为减少误差,基于452个茄科植物,以化学成分为目标,探索了一维卷积神经网络(1DCNN)在近红外数据上的回归模型研究。经参数优化,总结了... 近红外光谱技术已被广泛应用于各种检测行业,但传统方法难以汇集光谱关键信息,导致模型预测误差较大。为减少误差,基于452个茄科植物,以化学成分为目标,探索了一维卷积神经网络(1DCNN)在近红外数据上的回归模型研究。经参数优化,总结了一套兼顾精度与训练效率的1DCNN模型参数,为后续模型研究提供参考。模型测试集的均方根误差为0.02~0.49,平均相对误差为0.8%~1.7%,远小于历史文献。相比传统方法,1DCNN可充分利用全部近红外谱图数据,且建模简单,模型预测能力强。该工作能为近红外光谱相关研究提供新的数据处理思路,也能促进该技术的应用与发展。 展开更多
关键词 一维卷积神经网络 近红外光谱 深度学习
在线阅读 下载PDF
基于深度卷积变分自编码网络的故障诊断方法 被引量:37
14
作者 佘博 田福庆 梁伟阁 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第10期27-35,共9页
机械传动部件的健康状况影响设备的正常运行,针对齿轮、轴承等传动部件的故障诊断,传统的诊断方法是依靠人工经验提取和选择故障特征,然而,特征选择的优劣直接影响诊断效果。结合深度学习在特征提取和处理高维数据方面的优势,提出一种... 机械传动部件的健康状况影响设备的正常运行,针对齿轮、轴承等传动部件的故障诊断,传统的诊断方法是依靠人工经验提取和选择故障特征,然而,特征选择的优劣直接影响诊断效果。结合深度学习在特征提取和处理高维数据方面的优势,提出一种基于深度卷积变分自编码网络(DCVAEN)的故障诊断方法。该方法利用频谱数据训练深度神经网络,能减少特征提取对人工经验的依赖和信息的损失,在网络中加入了变化的噪声和调整学习率,使得网络隐层提取判别性的故障特征,能满足多故障和变工况的诊断。利用自吸式离心泵数据和西储大学轴承数据进行分析验证,实验结果表明,所提方法能更准确、更稳定地识别传动部件的各种故障,具有较强的泛化能力。 展开更多
关键词 卷积 变分自编码 深度神经网络 传动部件 故障诊断
在线阅读 下载PDF
一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用 被引量:53
15
作者 张西宁 向宙 唐春华 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第7期1-8,59,共9页
为了解决卷积神经网络权值往往只能随机初始化的问题,提出了一种卷积自编码器。以卷积池化过后的特征为权值,对反卷积核进行叠加,叠加步长为池化时的长度,将信号重构回原信号空间。以原信号与重构信号的差值最小为目标,对卷积核和反卷... 为了解决卷积神经网络权值往往只能随机初始化的问题,提出了一种卷积自编码器。以卷积池化过后的特征为权值,对反卷积核进行叠加,叠加步长为池化时的长度,将信号重构回原信号空间。以原信号与重构信号的差值最小为目标,对卷积核和反卷积核进行优化。进一步,编码特征可以作为新的输入,利用同样的方式进行编码,依次循环,最后给网络加上全连接网络和分类器,用少量带标签样本进行微调,形成具有复杂特征提取能力的深度卷积自编码网络。将该网络用于滚动轴承故障识别,将时域振动信号直接输入网络,在公共数据集——西储大学轴承数据集以及实验室实测数据集上均取得了比传统卷积神经网络要好得多的识别效果,例如在实验室实测数据集上将识别精度从0.799提高到了0.921。将底层提取到的特征通过反卷积核逐层重构,第一次在原信号空间看到了神经网络到底"学"到了什么。观察重构信号可知,卷积神经网络对信号特征的提取实际上就是对信号的一种分解,网络底层通道数对应信号分解时基的个数,通道内单个特征对应基分解时的时间点。提出的卷积自编码器以及对网络结构的分析可为后续科研技术人员构建卷积神经网络提供指导。 展开更多
关键词 深度学习 卷积神经网络 自动编码 轴承故障诊断
在线阅读 下载PDF
基于深度卷积自编码神经网络的手写数字识别研究 被引量:23
16
作者 曾文献 孟庆林 郭兆坤 《计算机应用研究》 CSCD 北大核心 2020年第4期1239-1243,共5页
针对提高不同笔体下的手写识别准确率进行了研究,将深度卷积神经网络与自动编码器相结合,设计卷积自编码器网络层数,形成深度卷积自编码神经网络。首先采用双线性插值方法分别对MNIST数据集与10000幅自制中国大学生手写数字图片进行图... 针对提高不同笔体下的手写识别准确率进行了研究,将深度卷积神经网络与自动编码器相结合,设计卷积自编码器网络层数,形成深度卷积自编码神经网络。首先采用双线性插值方法分别对MNIST数据集与10000幅自制中国大学生手写数字图片进行图像预处理,然后使用单一MNIST数据集对深度卷积自编码神经网络进行训练与测试;最后使用MNIST与自制数据集中5000幅图片混合,再次训练该网络,对另外5000幅图片进行测试。实验数据表明,所提深度卷积自编码神经网络在MNIST测试集正确率达到99.37%;且5000幅自制数据集模型测试正确率达99.33%,表明该算法实用性较强,在不同笔体数字上得到了较高的识别准确率,模型准确有效。 展开更多
关键词 卷积自编码神经网络 双线性插值 手写数字识别 深度学习
在线阅读 下载PDF
基于改进反馈卷积自编码器的高光谱图像降维 被引量:2
17
作者 刘芳华 宋文杰 《现代电子技术》 北大核心 2024年第19期94-99,共6页
高光谱图像具有光谱分辨率高、特征丰富、图谱合一等优势,在土地利用分类、城市规划管理、森林资源调查等领域有着广泛应用。但是,高光谱图像不同光谱通道间存在大量冗余信息,导致高光谱图像降维算法复杂度高,同时也降低了高光谱图像降... 高光谱图像具有光谱分辨率高、特征丰富、图谱合一等优势,在土地利用分类、城市规划管理、森林资源调查等领域有着广泛应用。但是,高光谱图像不同光谱通道间存在大量冗余信息,导致高光谱图像降维算法复杂度高,同时也降低了高光谱图像降维算法的性能。针对该问题,结合目前主流的深度学习技术,文中提出一种基于改进反馈卷积自编码器的高光谱图像降维方法。首先,为增强信息的流动,在原有编码器模型中引入残差连接,促进了梯度信息的传播;其次,为了能够更好地捕捉高光谱数据的关键特征,在现有解码器模型中加入分支结构;最后,通过使用平均池化替换最大池化,采用平均绝对误差(MAE)替换均方误差(MSE)损失函数,进一步优化模型的特征提取能力,提高高光谱图像降维的性能。实验结果表明,所提出模型在Indian Pines数据集上的高光谱图像降维性能超过了现有最新方法,为高光谱图像降维提供了一个新思路。 展开更多
关键词 高光谱图像 高光谱图像降 反馈卷积 自编码 深度学习 分支结构
在线阅读 下载PDF
循环相关熵和一维浅卷积神经网络轴承故障诊断 被引量:1
18
作者 李辉 徐伟烝 《机械科学与技术》 CSCD 北大核心 2024年第4期600-610,共11页
针对传统二维深度卷积神经网络结构复杂、易产生过拟合和难以有效处理低信噪比信号的问题,提出了一种基于循环相关熵和一维浅卷积神经网络的故障诊断-CCe-1D SCNN方法。该方法综合利用了一维浅卷积神经网络结构简单、计算复杂度低和循... 针对传统二维深度卷积神经网络结构复杂、易产生过拟合和难以有效处理低信噪比信号的问题,提出了一种基于循环相关熵和一维浅卷积神经网络的故障诊断-CCe-1D SCNN方法。该方法综合利用了一维浅卷积神经网络结构简单、计算复杂度低和循环相关熵能在低信噪比环境下有效提取故障特征的优点。首先,计算轴承故障振动信号的循环相关熵函数、循环相关熵谱密度函数和广义循环平稳度;其次,将一维归一化的广义循环平稳度作为一维浅卷积神经网络的输入层,通过一维浅卷积神经网络自动实现故障特征提取和模式分类;最后,将CCe-1D SCNN方法应用于电机轴承故障特征提取和分类,实验结果表明:CCe-1D SCNN方法在低噪声比情况下仍能保持很高的模式识别正确率,为一种自动故障特征提取和模式识别的有效方法。 展开更多
关键词 循环相关熵 一维卷积神经网络 深度学习 循环平稳信号 故障诊断
在线阅读 下载PDF
基于深度卷积神经网络的多元医学信号多级上下文自编码器 被引量:7
19
作者 袁野 贾克斌 刘鹏宇 《电子与信息学报》 EI CSCD 北大核心 2020年第2期371-378,共8页
多元医学信号的典型代表有多模态睡眠图和多通道脑电图等,采用无监督深度学习表征多元医学信号是目前健康信息学领域中的一个研究热点。为了解决现有模型没有充分结合医学信号多元时序结构特点的问题,该文提出了一种无监督的多级上下文... 多元医学信号的典型代表有多模态睡眠图和多通道脑电图等,采用无监督深度学习表征多元医学信号是目前健康信息学领域中的一个研究热点。为了解决现有模型没有充分结合医学信号多元时序结构特点的问题,该文提出了一种无监督的多级上下文深度卷积自编码器(mCtx-CAE)。首先改进传统卷积神经网络结构,提出一种多元卷积自编码模块,以提取信号片段内的多元上下文特征;其次,提出采用语义学习技术对信号片段间的时序信息进行自编码,进一步提取时序上下文特征;最后通过共享特征表示设计目标函数,训练端到端的多级上下文自编码器。实验结果表明,该文所提模型在两种应用于不同医疗场景下的多模态和多通道数据集(UCD和CHB-MIT)上表现均优于其它无监督特征学习方法,能有效提高多元医学信号的融合特征表达能力,对提高临床时序数据的分析效率有着重要意义。 展开更多
关键词 多元医学信号 自编码 上下文学习 卷积神经网络 深度学习
在线阅读 下载PDF
基于深度自动编码器的脑网络状态观测矩阵降维方法 被引量:3
20
作者 杨保杰 王彬 +3 位作者 薛洁 代照坤 刘辉 熊新 《传感器与微系统》 CSCD 2017年第1期9-12,共4页
针对人脑网络状态观测矩阵高维无特征的特点,给出了一种基于深度自动编码器(DAE)的降维算法。利用深度学习网络,将高维的人脑网络空间表达映射到低维的本质特征空间中,为进一步提炼脑网络的动态性能提供了基础。实验结果证明:应用该方... 针对人脑网络状态观测矩阵高维无特征的特点,给出了一种基于深度自动编码器(DAE)的降维算法。利用深度学习网络,将高维的人脑网络空间表达映射到低维的本质特征空间中,为进一步提炼脑网络的动态性能提供了基础。实验结果证明:应用该方法可以达到有效的降维效果,且降维后脑网络状态通过自组织特征映射聚类具有一定的规律性,从而为脑网络的动态特性研究提供了基础。 展开更多
关键词 脑功能网络 深度自动编码 自组织特征映射 无监督聚类
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部