期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于一维深度卷积自动编码器的刀具状态监测方法 被引量:8
1
作者 杨国葳 李宏坤 +1 位作者 张明亮 黄刚劲 《振动与冲击》 EI CSCD 北大核心 2021年第21期223-233,274,共12页
由于现有智能刀具磨损状态识别方法存在过于依赖样本数据预处理手段的问题,提出了一种基于一维深度卷积自动编码器(ODCAE)的刀具磨损状态识别方法,提高利用原始时域信号作为模型输入的刀具磨损状态识别精度。首先采集不同工况下主轴电... 由于现有智能刀具磨损状态识别方法存在过于依赖样本数据预处理手段的问题,提出了一种基于一维深度卷积自动编码器(ODCAE)的刀具磨损状态识别方法,提高利用原始时域信号作为模型输入的刀具磨损状态识别精度。首先采集不同工况下主轴电机的三相电流信号,将三相电流信号融合成电流有效值并做归一化处理,以此作为模型的输入。然后,利用一维深度卷积自动编码器对输入样本进行无监督预训练,提取基于信号本身的特征信息。最后保留自动编码器的编码部分,利用样本标签进行二次有监督微调,实现对刀具不同磨损状态的识别。实验结果表明,ODCAE方法对刀具不同的磨损状态平均识别率可达99%,卡帕系数0.9840,能够自适应地提取特征并高效率的实现刀具磨损状态识别。 展开更多
关键词 刀具磨损 主轴电流 深度学习 一维深度卷积自动编码器(odcae)
在线阅读 下载PDF
基于改进反馈卷积自编码器的高光谱图像降维
2
作者 刘芳华 宋文杰 《现代电子技术》 北大核心 2024年第19期94-99,共6页
高光谱图像具有光谱分辨率高、特征丰富、图谱合一等优势,在土地利用分类、城市规划管理、森林资源调查等领域有着广泛应用。但是,高光谱图像不同光谱通道间存在大量冗余信息,导致高光谱图像降维算法复杂度高,同时也降低了高光谱图像降... 高光谱图像具有光谱分辨率高、特征丰富、图谱合一等优势,在土地利用分类、城市规划管理、森林资源调查等领域有着广泛应用。但是,高光谱图像不同光谱通道间存在大量冗余信息,导致高光谱图像降维算法复杂度高,同时也降低了高光谱图像降维算法的性能。针对该问题,结合目前主流的深度学习技术,文中提出一种基于改进反馈卷积自编码器的高光谱图像降维方法。首先,为增强信息的流动,在原有编码器模型中引入残差连接,促进了梯度信息的传播;其次,为了能够更好地捕捉高光谱数据的关键特征,在现有解码器模型中加入分支结构;最后,通过使用平均池化替换最大池化,采用平均绝对误差(MAE)替换均方误差(MSE)损失函数,进一步优化模型的特征提取能力,提高高光谱图像降维的性能。实验结果表明,所提出模型在Indian Pines数据集上的高光谱图像降维性能超过了现有最新方法,为高光谱图像降维提供了一个新思路。 展开更多
关键词 高光谱图像 高光谱图像降 反馈卷积 编码器 深度学习 分支结构
在线阅读 下载PDF
基于深度自动编码器神经网络的飞行器翼型参数降维与优化设计 被引量:6
3
作者 吴则良 叶建川 +1 位作者 王江 金忍 《兵工学报》 EI CAS CSCD 北大核心 2022年第6期1326-1336,共11页
传统飞行器翼型参数化描述方法在翼型优化设计研究中因变量较多导致优化效率低、计算工作量大,为此提出一种基于深度自动编码器(DAE)的神经网络模型。将该模型用于翼型优化设计研究中描述参数降维问题,研究经该模型降维后各翼型描述参... 传统飞行器翼型参数化描述方法在翼型优化设计研究中因变量较多导致优化效率低、计算工作量大,为此提出一种基于深度自动编码器(DAE)的神经网络模型。将该模型用于翼型优化设计研究中描述参数降维问题,研究经该模型降维后各翼型描述参数的物理意义,并与本征正交分解法(POD)对翼型描述参数降维效果进行对比。在给定的优化设计目标与约束条件下,设计基于代理模型和遗传算法的翼型优化方法,对RAE2822翼型进行跨声速来流下的优化设计,将所提模型与类别形状函数变换法(CST)、POD方法的优化效率与翼型优化效果进行对比。对比结果表明,所提利用DAE神经网络模型的方法优化效率更高,在跨声速来流下对RAE2822进行减阻优化设计结果明显优于CST方法、POD方法。 展开更多
关键词 飞行器 翼型优化设计 参数降 深度自动编码器 神经网络 代理模型
在线阅读 下载PDF
YUV空间中基于稀疏自动编码器的无监督特征学习 被引量:16
4
作者 李祖贺 樊养余 王凤琴 《电子与信息学报》 EI CSCD 北大核心 2016年第1期29-37,共9页
现有无监督特征学习算法通常在RGB色彩空间进行特征提取,而图像和视频压缩编码标准则广泛采用YUV色彩空间。为了利用人类视觉特性和避免色彩空间转换所消耗的计算量,该文提出一种基于稀疏自动编码器在YUV色彩空间进行无监督特征学习的... 现有无监督特征学习算法通常在RGB色彩空间进行特征提取,而图像和视频压缩编码标准则广泛采用YUV色彩空间。为了利用人类视觉特性和避免色彩空间转换所消耗的计算量,该文提出一种基于稀疏自动编码器在YUV色彩空间进行无监督特征学习的方法。首先在YUV空间随机采集图像子块并进行白化处理,然后利用稀疏自动编码器进行无监督局部特征学习。在预处理阶段,针对YUV空间亮度和色度通道相互独立的特性,提出一种将亮度和色度进行分离的白化措施。最后用学习到的局部特征在大尺寸图像上进行卷积操作从而获得全局特征,并送入图像分类系统进行性能测试。实验结果表明:只要对亮度分量进行适当的白化处理,在YUV空间中的无监督特征学习就能够获得相当于甚至优于RGB空间的彩色图像分类性能。 展开更多
关键词 图像分类 无监督特征学习 稀疏自动编码器 卷积神经网络 深度学习
在线阅读 下载PDF
基于改进型稀疏自动编码器的图像识别 被引量:11
5
作者 尹征 唐春晖 张轩雄 《电子科技》 2016年第1期124-127,共4页
传统的稀疏自动编码器不具备平移不变性,同时对非高斯噪声较为敏感。为增加网络平移不变的特性,借鉴卷积神经网络的相关理论,通过对原始的像素块进行卷积运算以达到上述目的;而为了提高对非高斯噪声的鲁棒性,自动编码器的代价函数由均... 传统的稀疏自动编码器不具备平移不变性,同时对非高斯噪声较为敏感。为增加网络平移不变的特性,借鉴卷积神经网络的相关理论,通过对原始的像素块进行卷积运算以达到上述目的;而为了提高对非高斯噪声的鲁棒性,自动编码器的代价函数由均方误差改为了最大相关熵准则。通过在MNIST和CIFAR-10数据集上进行试验,结果证明,改进后的方法较传统的自动编码器具有更好地识别效果,识别率提高了2%~6%。 展开更多
关键词 深度学习 自动编码器 卷积神经网络 最大相关熵
在线阅读 下载PDF
一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用 被引量:51
6
作者 张西宁 向宙 唐春华 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第7期1-8,59,共9页
为了解决卷积神经网络权值往往只能随机初始化的问题,提出了一种卷积自编码器。以卷积池化过后的特征为权值,对反卷积核进行叠加,叠加步长为池化时的长度,将信号重构回原信号空间。以原信号与重构信号的差值最小为目标,对卷积核和反卷... 为了解决卷积神经网络权值往往只能随机初始化的问题,提出了一种卷积自编码器。以卷积池化过后的特征为权值,对反卷积核进行叠加,叠加步长为池化时的长度,将信号重构回原信号空间。以原信号与重构信号的差值最小为目标,对卷积核和反卷积核进行优化。进一步,编码特征可以作为新的输入,利用同样的方式进行编码,依次循环,最后给网络加上全连接网络和分类器,用少量带标签样本进行微调,形成具有复杂特征提取能力的深度卷积自编码网络。将该网络用于滚动轴承故障识别,将时域振动信号直接输入网络,在公共数据集——西储大学轴承数据集以及实验室实测数据集上均取得了比传统卷积神经网络要好得多的识别效果,例如在实验室实测数据集上将识别精度从0.799提高到了0.921。将底层提取到的特征通过反卷积核逐层重构,第一次在原信号空间看到了神经网络到底"学"到了什么。观察重构信号可知,卷积神经网络对信号特征的提取实际上就是对信号的一种分解,网络底层通道数对应信号分解时基的个数,通道内单个特征对应基分解时的时间点。提出的卷积自编码器以及对网络结构的分析可为后续科研技术人员构建卷积神经网络提供指导。 展开更多
关键词 深度学习 卷积神经网络 自动编码器 轴承故障诊断
在线阅读 下载PDF
一种基于一维卷积神经网络的试井模型智能识别方法
7
作者 齐占奎 张新鹏 +2 位作者 刘旭亮 查文舒 李道伦 《油气井测试》 2024年第2期72-78,共7页
为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经... 为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经网络模型,将样本库中双对数曲线的压力变化和压力导数数据作为输入,油藏类别作为网络输出训练及优化网络,总识别准确率可达99.16%,敏感度均在98%以上。经4口井实例应用,正确识别试井模型的概率大于0.99,与二维卷积神经网络相比,1D CNN显著降低了计算复杂度和时间成本,加快了训练速度。这表明基于试井理论所构建的样本库是有效的,能满足实测数据模型识别的需求;同时证明了方法的有效性、实用性和普适性。 展开更多
关键词 试井模型 一维卷积神经网络 智能识别 深度学习 自动解释 模型识别 样本库
在线阅读 下载PDF
基于上下文编码器的图像修复算法
8
作者 任鹏博 毛克彪 《高技术通讯》 CAS 2023年第9期947-956,共10页
基于数学的传统模型在纹理学习上的效果比较好,但是在图像内容和语义上有所缺失。近年来,随着深度学习的兴起,将深度学习应用于图像修复的方法十分热门,对各种残缺图像的修补也取得了较好的结果。本文使用的基于上下文编码器的图像修复... 基于数学的传统模型在纹理学习上的效果比较好,但是在图像内容和语义上有所缺失。近年来,随着深度学习的兴起,将深度学习应用于图像修复的方法十分热门,对各种残缺图像的修补也取得了较好的结果。本文使用的基于上下文编码器的图像修复方法,结合自编码器(AE)和生成对抗网络(GAN)。其中,使用AE进行图像特征的学习,生成待修补区域的预测图;使用GAN的对抗学习来优化模型;使用由重建损失和对抗损失组成的联合损失函数。经过训练后的卷积神经网络(CNN),能够根据图像周边的像素特征,对丢失的区域进行合理推断,生成缺失部分。最后,本文对比了使用联合损失函数和单独使用重建损失与对抗损失函数的效果,并将本文算法与另外2种模型对比,采用客观评价指标,即平均绝对误差(MAE)、峰值信噪比(PSNR)以及结构相似性(SSIM)进行评价,其结果表明本模型在修复残缺图像时效果均较好,普适性更强。 展开更多
关键词 图像修复 深度学习 卷积神经网络(CNN) 自动编码器(AE) 生成对抗网络(GAN)
在线阅读 下载PDF
一种深度学习的雷达辐射源识别算法 被引量:63
9
作者 周志文 黄高明 +1 位作者 高俊 满欣 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2017年第3期77-82,共6页
针对传统依靠于人工经验提取雷达辐射源特征方法的不足,提出了一种新颖的基于联合深度时频特征的辐射源识别算法.首先将时域信号变换到二维时频域,并利用随机投影和主成分分析方法分别从维持子空间和能量角度对时频图像降维;接着在预训... 针对传统依靠于人工经验提取雷达辐射源特征方法的不足,提出了一种新颖的基于联合深度时频特征的辐射源识别算法.首先将时域信号变换到二维时频域,并利用随机投影和主成分分析方法分别从维持子空间和能量角度对时频图像降维;接着在预训练阶段,利用无标签的样本信号层级训练深度模型,再根据类别信息精调网络参数;最后,构造了逻辑回归分类来完成识别任务.仿真实验中利用6种辐射源信号验证了提出算法的有效性,结果表明,联合深度特征更加有助于提高识别准确度,算法运行更加高效. 展开更多
关键词 时频分布 层叠自动编码器 深度学习 雷达辐射源识别
在线阅读 下载PDF
基于深度学习的中文微博命名实体识别 被引量:15
10
作者 刘玉娇 琚生根 +1 位作者 李若晨 金玉 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2016年第S2期142-146,共5页
针对微博用语不规范、噪声多、更新快、缩略语多,且数据量大等相关特点,提出基于深度学习的方法进行微博命名实体的识别。首先利用大量的未标注的微博信息对自动编码器训练,获得抽象特征,随后将这些特征作为深度学习网络的输入,最后得... 针对微博用语不规范、噪声多、更新快、缩略语多,且数据量大等相关特点,提出基于深度学习的方法进行微博命名实体的识别。首先利用大量的未标注的微博信息对自动编码器训练,获得抽象特征,随后将这些特征作为深度学习网络的输入,最后得出句子中每个字的类标。在进行自动编码器训练的过程中,使用卷积方法替代窗口移动方法,以获取句子中的长依赖信息。通过对新浪微博数据的实验结果表明,该深度学习方法能够提高微博中命名实体识别的F1值,说明了本文算法的有效性。 展开更多
关键词 微博 深度学习 自动编码器 卷积 命名实体识别
在线阅读 下载PDF
深度学习在水利行业上的应用综述 被引量:19
11
作者 孙涛 王雷 +2 位作者 付文博 傅罡 张颖 《中国农村水利水电》 北大核心 2018年第12期90-93,100,共5页
作为机器学习的重要分支,深度学习在图像智能分析、语音识别等领域上表现出卓越的优势,在水利行业上也有着广泛的应用前景。阐述了深度学习的发展历程,介绍了深度学习中应用最为广泛的三种算法:卷积神经网络、深度置信网和堆叠自动编码... 作为机器学习的重要分支,深度学习在图像智能分析、语音识别等领域上表现出卓越的优势,在水利行业上也有着广泛的应用前景。阐述了深度学习的发展历程,介绍了深度学习中应用最为广泛的三种算法:卷积神经网络、深度置信网和堆叠自动编码器,结合现阶段深度学习在水利行业中的应用,分别从遥感影像分类、水质分析预测与水文预报三个方面给进行综述。最后针对深度学习在水利行业中应用存在的问题和未来趋势进行了分析与展望。 展开更多
关键词 深度学习 卷积神经网络 深度置信网 自动编码器
在线阅读 下载PDF
基于TransformerEncoder-DR1DCNN的锂离子电池RUL预测
12
作者 王浩 李亚 +1 位作者 王海瑞 朱贵富 《陕西理工大学学报(自然科学版)》 2025年第2期54-63,共10页
针对锂离子电池的剩余使用寿命(RUL)预测,提出了一种基于Transformer编码器层(TransformerEncoder)与深度残差一维卷积神经网络(DR1DCNN)相结合的预测方法。首先提取容量数据作为直接健康因子,并对容量数据进行归一化处理以消除数据量... 针对锂离子电池的剩余使用寿命(RUL)预测,提出了一种基于Transformer编码器层(TransformerEncoder)与深度残差一维卷积神经网络(DR1DCNN)相结合的预测方法。首先提取容量数据作为直接健康因子,并对容量数据进行归一化处理以消除数据量纲影响;接着使用滑动时间窗口机制构建容量时序序列数据,并划分训练集和测试集;然后采用TransformerEncoder捕捉容量时序序列全局各个位置之间的相关性以及序列长距离的依赖关系,使用DR1DCNN提取局部相邻数据间的关联关系。最后采用不同预测起点的多步预测方式以检验模型的有效性。以NASA公开的数据集进行实验,两组电池的均方根误差不超过2%,平均绝对误差不超过1.4%。并通过与其他文献的实验结果进行对比,验证了所提方法能够提前多步预测锂离子电池的RUL,以起到早期预警作用。 展开更多
关键词 Transformer编码器 深度残差一维卷积神经网络 多步预测 锂离子电池 剩余使用寿命预测
在线阅读 下载PDF
基于上下文信息和MLE机制的视频异常检测算法
13
作者 焦雪 高立青 《现代电子技术》 北大核心 2025年第9期8-14,共7页
针对现有的视频异常检测方法缺乏对前景对象的自主选择性,使模型对背景等无关信息的敏感性增加,进而导致重构或预测误差与前景目标数量成正比,造成误报的问题,提出一种基于上下文信息和最大局部误差机制的视频异常检测算法。该算法设计... 针对现有的视频异常检测方法缺乏对前景对象的自主选择性,使模型对背景等无关信息的敏感性增加,进而导致重构或预测误差与前景目标数量成正比,造成误报的问题,提出一种基于上下文信息和最大局部误差机制的视频异常检测算法。该算法设计了一种基于生成对抗网络的检测框架,并提出SSPCAB-UNet生成器模型,通过在UNet中加入自监督预测卷积关注块来增强模型对局部特征和全局上下文信息的理解能力,减少对无关信息的关注,从而降低了误报的可能性。此外,使用最大局部误差机制来关注局部异常区域的预测程度,缓解因前景目标数量增多造成的较大预测误差问题。通过双模块的协同工作可以有效减少由于缺乏对前景对象的自主选择性而产生的误报问题。所提方法在CUHK Avenue、UCSD Ped2和Shanghai Tech三个数据集上的检测精度分别达到87.5%、98.2%和75.4%,验证了所提模型的有效性。 展开更多
关键词 异常检测 自监督预测卷积关注块 最大局部误差机制 自动编码器 深度学习 生成对抗网络
在线阅读 下载PDF
基于神经进化的深度学习模型研究综述 被引量:19
14
作者 韩冲 王俊丽 +1 位作者 吴雨茜 张超波 《电子学报》 EI CAS CSCD 北大核心 2021年第2期372-379,共8页
深度学习研究发展至今已可以胜任各类识别、分类、生成任务,但是对于不同的任务,神经网络的结构或参数不可能只是微小的变化,依然需要专家进行调整.在这样的情况下,自动化地调整神经网络的结构或参数成为研究热点.其中,以达尔文自然进... 深度学习研究发展至今已可以胜任各类识别、分类、生成任务,但是对于不同的任务,神经网络的结构或参数不可能只是微小的变化,依然需要专家进行调整.在这样的情况下,自动化地调整神经网络的结构或参数成为研究热点.其中,以达尔文自然进化论为灵感的神经进化成为主要优化方法.利用神经进化优化的深度学习模型以种群为基础,通过突变、重组等操作进化,可实现自动地、逐步地构建神经网络并最终选择出性能最优的深度学习模型.本文简述了神经进化与进化计算;详细概述了各类基于神经进化的深度学习模型;分析了各类模型的性能;总结了神经进化与深度学习融合的前景并探讨下一步的研究方向. 展开更多
关键词 神经进化 深度学习 进化计算 卷积神经网络 生成式对抗网络 自动编码器 长短期记忆网络 深度强化学习
在线阅读 下载PDF
基于深度学习的水平非均匀蒸发波导反演方法研究
15
作者 吴佳静 张金鹏 +1 位作者 张玉石 魏志强 《电波科学学报》 CSCD 北大核心 2023年第4期665-672,共8页
水平非均匀蒸发波导是一种异常的大气结构,在海上出现的概率高,对海上低空雷达具有较强的电磁捕获能力.然而,海上低空蒸发波导修正折射率剖面反演过程中由于水平方向剖面参数的非均匀变化,导致在实际的海洋环境中产生较大的反演复杂度... 水平非均匀蒸发波导是一种异常的大气结构,在海上出现的概率高,对海上低空雷达具有较强的电磁捕获能力.然而,海上低空蒸发波导修正折射率剖面反演过程中由于水平方向剖面参数的非均匀变化,导致在实际的海洋环境中产生较大的反演复杂度和误差.为解决上述问题,首先提出了一维残差扩张因果卷积自编码器(one-dimensional residual dilated causal convolutional autoencoder,1D-RDCAE)网络实现低自由度的非均匀蒸发波导剖面建模,其次提出了多尺度卷积残差网络(multi-scale convolutional attention residual network,MSCA-ResNet)框架来实现水平非均匀蒸发波导剖面反演.为验证建模模型的有效性,在模拟海杂波功率数据集上验证降维模型的有效性,实验结果表明,基于1D-RDCAE比基于主分量分析法、堆栈自动编码器和一维卷积自动编码器降维重构后更接近原始数据,并且在模型训练过程中收敛速度更快.为了验证反演模型的有效性,在模拟的海杂波和实测海杂波数据上进行了测试,结果表明基于仿真海杂波和实测海杂波数据分别可实现蒸发波导高度反演准确率为96.98%和91.25%,优于目前典型的反演方法.本文提出的基于深度学习的水平非均匀蒸发波导反演方法具有模型反演效率高、模型复杂度低、反演误差小的特点,为海上反常传播环境实时高精度认知提供了新技术. 展开更多
关键词 海杂波 蒸发波导 水平非均匀 深度学习 反演 主分量分析(PCA)法 一维残差扩张因果卷积编码器 多尺度卷积残差网络
在线阅读 下载PDF
基于深度学习和监测数据的桥梁损伤识别方法研究 被引量:2
16
作者 唐良 边祖光 +1 位作者 赵银飞 金婉 《城市道桥与防洪》 2022年第1期174-180,M0016,M0017,共9页
为了挖掘桥梁健康监测数据蕴含的大量隐藏信息,以及改进传统结构损伤识别方法的不足之处,提出了基于桥梁监测数据的损伤识别方法。从有限元模拟数据和实际监测数据中分别提取加速度响应,并对原始数据进行了预处理。通过卷积神经网络和... 为了挖掘桥梁健康监测数据蕴含的大量隐藏信息,以及改进传统结构损伤识别方法的不足之处,提出了基于桥梁监测数据的损伤识别方法。从有限元模拟数据和实际监测数据中分别提取加速度响应,并对原始数据进行了预处理。通过卷积神经网络和栈式自编码网络分别对明州大桥监测数据的可视化图像和时间序列进行识别,同时与浅层神经网络方法的识别正确率对比。结果表明:基于深度学习和监测数据的损伤识别方法不论是通过图像识别还是通过时间序列识别,都表现出优秀的性能:识别正确率达85%以上。与浅层神经网络相比,深度神经网络的损伤工况分类能力更强,识别正确率提高20%以上。 展开更多
关键词 损伤识别 深度学习 监测数据 卷积神经网络 栈式自动编码器
在线阅读 下载PDF
基于多维特征神经网络集成的有源干扰识别算法
17
作者 赵忠臣 刘利民 +2 位作者 解辉 韩壮志 荆贺 《现代电子技术》 2023年第19期1-7,共7页
针对在强噪声环境下雷达有源干扰识别准确率不高的问题,提出一种基于功率谱密度、频谱瞬时包络与时频图特征神经网络集成的干扰识别算法。首先从理论推导和方法实现两个角度论述了神经网络集成的基本原理;然后阐述了特征获取方法、网络... 针对在强噪声环境下雷达有源干扰识别准确率不高的问题,提出一种基于功率谱密度、频谱瞬时包络与时频图特征神经网络集成的干扰识别算法。首先从理论推导和方法实现两个角度论述了神经网络集成的基本原理;然后阐述了特征获取方法、网络结构和采用Stacking策略进行网络生成与集成的过程,分析了有源干扰识别的训练、测试结果;最后将该方法与基于时频图的AlexNet检测器、基于功率谱密度序列的LSTM检测器、基于特征融合的双通道检测器进行比较,仿真结果表明,在干噪比(JNR)大于-6 dB时,所提算法对6种有源干扰识别准确概率达到99%以上,具有很好的检测性能。 展开更多
关键词 有源干扰识别 神经网络集成 特征 深度编码器 卷积神经网络 Stacking策略 机器学习 泛化误差
在线阅读 下载PDF
基于激光雷达的列车前向障碍物检测方法 被引量:2
18
作者 曹志威 戈轩宇 +4 位作者 秦勇 李威 沙淼 高阳 关吉瑞 《中国铁道科学》 EI CAS CSCD 北大核心 2024年第6期183-193,共11页
为解决基于视频图像的列车前向障碍物检测方法在光照条件和目标距离等因素下的泛化性问题,提出基于激光雷达的检测方法。首先,聚焦VoxelNeXt体素化过程中的精度损失,通过引入动态体素化技术对体素化过程进行优化,以减少信息丢失;其次,... 为解决基于视频图像的列车前向障碍物检测方法在光照条件和目标距离等因素下的泛化性问题,提出基于激光雷达的检测方法。首先,聚焦VoxelNeXt体素化过程中的精度损失,通过引入动态体素化技术对体素化过程进行优化,以减少信息丢失;其次,针对列车前向运行环境的空间分布特征,设计L型残差稀疏卷积模块,以便有效捕捉列车前向运行环境中点云数据的深度语义特征;最后,提出跨维度自动编码模块,使之与主干特征提取网络相结合,形成跨维度自动编码网络,进一步增强网络输出特征的表达能力。结果表明:所提方法的平均精度均值可达72.38%,平均召回率均值可达76.59%,相较于其他方法表现出显著的性能优势。该方法能够满足列车前向障碍物高精度、远距离、快速化的检测需求,为列车主动安全保障提供有效的技术依托。 展开更多
关键词 障碍物检测 激光雷达 深度学习 稀疏卷积 自动编码
在线阅读 下载PDF
生成式对抗网络研究进展 被引量:69
19
作者 王万良 李卓蓉 《通信学报》 EI CSCD 北大核心 2018年第2期135-148,共14页
生成式对抗网络(GAN,generative adversarial network)对生成式模型的发展具有深远意义,自提出后立刻受到人工智能学术界和工业界的广泛研究与高度关注,随着深度学习的技术发展,生成式对抗模型在理论和应用上得到不断推进。首先,阐述生... 生成式对抗网络(GAN,generative adversarial network)对生成式模型的发展具有深远意义,自提出后立刻受到人工智能学术界和工业界的广泛研究与高度关注,随着深度学习的技术发展,生成式对抗模型在理论和应用上得到不断推进。首先,阐述生成对抗模型的研究背景与意义,然后,详细论述生成式对抗网络在建模、架构、训练和性能评估方面的研究进展及其具体应用现状,最后,进行分析与总结,指出生成式对抗网络研究中亟待解决的问题以及未来的研究方向。 展开更多
关键词 深度学习 生成式对抗网络 卷积神经网络 自动编码器 对抗训练
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部