平面波的传播问题通常可以归结为一维波动方程的定解问题。在非均匀介质中,即使简单的一维波动方程也需要借助于数值方法获得近似解。3层5点古典差分格式是计算偏微分方程一种常用算法,作为一种显式迭代格式,需要满足稳定性条件a v t/x...平面波的传播问题通常可以归结为一维波动方程的定解问题。在非均匀介质中,即使简单的一维波动方程也需要借助于数值方法获得近似解。3层5点古典差分格式是计算偏微分方程一种常用算法,作为一种显式迭代格式,需要满足稳定性条件a v t/x≤1,其中v为波速,x为空间采样间隔,t为时间采样间隔。当a 1时,x v t,古典差分格式达到临界稳定状态。在这种情况下,平面波在t时间内的传播距离恰好等于空间采样间隔,差分格式真实地反映了平面波的传播原理,因而可以得到一维波动方程的精确解。但是,由于在非均匀介质中存在不连续的波阻抗界面,此方法不适于计算非均匀介质的波场。为了将临界稳定情况下的古典差分格式推广应用至非均匀层状介质,提出了一种能够处理波阻抗界面的有限差分格式,并应用傅里叶分析法得到其稳定性条件。模型算例验证了此算法的正确性。展开更多
对一维非齐次波动方程的始值问题在传统的叠加原理、达朗贝尔公式、齐次化原理的方法之外,完全用特征线方法,先将方程表示为a)(a)u f(x,t)t x t x(??+???????=的形式,进而引入中间变量Vu a u=??t???x,得以用一阶方程??tυ+a??υx=f(x,t)...对一维非齐次波动方程的始值问题在传统的叠加原理、达朗贝尔公式、齐次化原理的方法之外,完全用特征线方法,先将方程表示为a)(a)u f(x,t)t x t x(??+???????=的形式,进而引入中间变量Vu a u=??t???x,得以用一阶方程??tυ+a??υx=f(x,t)及??ut?a??xu=V(x,t)的特征线方法,推导出维该始植问题的与传统方法相同的解。展开更多
文摘平面波的传播问题通常可以归结为一维波动方程的定解问题。在非均匀介质中,即使简单的一维波动方程也需要借助于数值方法获得近似解。3层5点古典差分格式是计算偏微分方程一种常用算法,作为一种显式迭代格式,需要满足稳定性条件a v t/x≤1,其中v为波速,x为空间采样间隔,t为时间采样间隔。当a 1时,x v t,古典差分格式达到临界稳定状态。在这种情况下,平面波在t时间内的传播距离恰好等于空间采样间隔,差分格式真实地反映了平面波的传播原理,因而可以得到一维波动方程的精确解。但是,由于在非均匀介质中存在不连续的波阻抗界面,此方法不适于计算非均匀介质的波场。为了将临界稳定情况下的古典差分格式推广应用至非均匀层状介质,提出了一种能够处理波阻抗界面的有限差分格式,并应用傅里叶分析法得到其稳定性条件。模型算例验证了此算法的正确性。
文摘对一维非齐次波动方程的始值问题在传统的叠加原理、达朗贝尔公式、齐次化原理的方法之外,完全用特征线方法,先将方程表示为a)(a)u f(x,t)t x t x(??+???????=的形式,进而引入中间变量Vu a u=??t???x,得以用一阶方程??tυ+a??υx=f(x,t)及??ut?a??xu=V(x,t)的特征线方法,推导出维该始植问题的与传统方法相同的解。