期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于一维残差网络的复合绝缘子发热缺陷检测 被引量:1
1
作者 董懿飞 王晓杰 +3 位作者 王仁书 许军 舒胜文 陶贻青 《红外技术》 CSCD 北大核心 2023年第6期663-670,共8页
复合绝缘子在不同缺陷类型下表现出不同的发热特征,基于复合绝缘子中心轴温度数据,提出了一种基于一维残差网络的复合绝缘子发热缺陷检测方法。首先,统计分析复合绝缘子不同缺陷类型下的异常温升范围及位置信息,得到各缺陷类型下的复合... 复合绝缘子在不同缺陷类型下表现出不同的发热特征,基于复合绝缘子中心轴温度数据,提出了一种基于一维残差网络的复合绝缘子发热缺陷检测方法。首先,统计分析复合绝缘子不同缺陷类型下的异常温升范围及位置信息,得到各缺陷类型下的复合绝缘子中心轴温度数据样本集;然后,建立一维残差网络模型,在残差块中引入空洞卷积来扩大感受野,并加入有效通道注意力机制模块(efficient channel attention network, ECA_Net),提升与缺陷类别相关性较高的特征权重;最后,进行了算例验证及模型对比,同时采用t分布随机紧邻嵌入(t-distributed stochastic neighbor embedding,t-SNE)可视化方法,反映模型特征提取的效果。结果表明:该模型能够有效捕捉中心轴线温度数据的空间维度信息,自适应提取类别区分度较大的特征,相较于普通卷积、自编码器(auto encoder, AE)和支持向量机(support vector machine, SVM),其识别准确率得到了提升,具有较好的鲁棒性和泛化能力,实现了端到端的复合绝缘子发热缺陷检测。 展开更多
关键词 复合绝缘子 热成像 一维残差网络 空洞卷积 注意力机制 缺陷检测
在线阅读 下载PDF
基于一维残差卷积神经网络的Pi2脉动识别模型 被引量:1
2
作者 张怡悦 邹自明 方少峰 《空间科学学报》 北大核心 2025年第1期66-81,共16页
Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,... Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,如何有效地判断某段地磁场分量观测数据中是否有Pi2脉动发生,是构建Pi2脉动识别模型的关键.利用子午工程磁通门磁力仪观测的地磁场分量数据,基于一维残差卷积神经网络(One-Dimensional Residual Convolutional Neural Network,1D-ResCNN),构建了一个端到端的Pi2脉动识别模型,用于判别某段地磁场分量观测数据中是否有Pi2脉动发生.实验结果表明,该模型与现有公开发表的Pi2脉动机器学习识别模型相比,具有更高的识别准确率和更低的虚报率、漏报率. 展开更多
关键词 Pi2脉动 Pi2脉动识别模型 一维残差卷积神经网络
在线阅读 下载PDF
基于动态加权的多尺度残差网络旋转机械故障诊断算法 被引量:10
3
作者 史红梅 郑畅畅 +1 位作者 司瑾 陈晶城 《振动与冲击》 EI CSCD 北大核心 2022年第23期67-74,93,共9页
针对传统的机械故障诊断方法特征提取困难问题,提出一种新颖的基于特征通道重标定的动态加权多尺度残差网络旋转机械故障诊断方法。将原始数据作为网络的输入,设计宽卷积层进行信息初步融合扩大模型的感受野;再分别构建三个独立的以残... 针对传统的机械故障诊断方法特征提取困难问题,提出一种新颖的基于特征通道重标定的动态加权多尺度残差网络旋转机械故障诊断方法。将原始数据作为网络的输入,设计宽卷积层进行信息初步融合扩大模型的感受野;再分别构建三个独立的以残差块为基础的并行分支网络,通过设计多尺度卷积核分别从并行分支网络提取深度特征;接着设计动态加权层建立全局信息建模特征通道之间的动态非线性关系,对每个尺度的特征通道进行重标定,提高网络对故障信息的敏感性;将三个尺度的特征进行特征融合,通过分类器实现故障诊断。在多个数据集上进行试验,验证了该算法的有效性。 展开更多
关键词 旋转机械故障诊断 动态加权 一维残差网络 多尺度学习
在线阅读 下载PDF
基于1DResNet-BiLSTM模型的PPG信号血压检测
4
作者 王天波 李静 《传感器与微系统》 北大核心 2025年第7期81-84,88,共5页
当前采用光电容积脉搏波(PPG)信号进行血压检测的方法存在特征提取复杂且检测精度低等问题。为此,提出一种将一维残差网络(1DResNet)和双向长短期记忆(BiLSTM)网络并联融合的血压检测算法。该算法在1DResNet中嵌入注意力机制模块,以提取... 当前采用光电容积脉搏波(PPG)信号进行血压检测的方法存在特征提取复杂且检测精度低等问题。为此,提出一种将一维残差网络(1DResNet)和双向长短期记忆(BiLSTM)网络并联融合的血压检测算法。该算法在1DResNet中嵌入注意力机制模块,以提取PPG信号的局部波形特征;通过BiLSTM网络提取PPG信号的时间相关特征;然后将所有特征送入全连接层进行处理,建立PPG信号与血压之间的关系。提取公开数据库中的数据,对1DResNet-BiLSTM模型进行验证。结果表明:采用1DResNet-BiLSTM模型得到的收缩压和舒张压的预测误差分别为(2.710±4.274)mmHg和(1.713±2.712)mmHg,优于目前采用的方法,且血压预测结果满足医疗仪器促进协会标准以及英国高血压协会标准的A级标准。 展开更多
关键词 血压检测 光电容积脉搏波 一维残差网络 双向长短期记忆网络
在线阅读 下载PDF
基于1D-SE-ResNet的含风电电力系统动态分区惯量评估
5
作者 徐艳春 任建新 +2 位作者 宋文宇 席磊 MI Lu 《南方电网技术》 北大核心 2025年第6期119-132,共14页
随着风电机组渗透率的提高,电力系统惯量水平逐年下降。同时,频率响应存在分区特性,以区域为单位评估电力系统惯量更加灵活和准确。因此,提出了一种基于一维压缩激励残差神经网络(one-dimensional squeeze and excitation residual neur... 随着风电机组渗透率的提高,电力系统惯量水平逐年下降。同时,频率响应存在分区特性,以区域为单位评估电力系统惯量更加灵活和准确。因此,提出了一种基于一维压缩激励残差神经网络(one-dimensional squeeze and excitation residual neural network,1D-SE-ResNet)的系统动态分区惯量评估方法。首先,计算频率曲线趋势和数值近似距离,采用k-means聚类方法对系统进行动态分区并由S-C指标确定分区数量。然后,通过增加压缩和激励模块对一维残差神经网络进行改进,为每个通道提供权重从而提升网络性能,采集系统不同惯量水平和负荷扰动下的区域簇中心节点频率和频率变化率数据作为一维特征输入,区域有效惯量为输出,训练网络实现区域惯量评估。最后,在含风电的IEEE 39和IEEE 118系统上进行仿真。结果表明,在动态分区的基础上,训练好的1D-SE-ResNet可实现区域惯量的准确评估。 展开更多
关键词 频率响应特性 系统分区 分区惯量 一维压缩激励残差神经网络 惯量评估
在线阅读 下载PDF
基于1D-ResNet的沥青混合料光谱分类识别方法
6
作者 王晋军 周兴林 《现代电子技术》 北大核心 2025年第8期139-144,共6页
使用近红外光谱技术对沥青混合料的老化程度进行快速有效评估,对于沥青道路养护具有重要意义。为了实现不同老化程度沥青混合料的快速准确分类,提出一种基于一维残差卷积神经网络(1D-ResNet)的沥青混合料光谱分类方法。该方法是在卷积... 使用近红外光谱技术对沥青混合料的老化程度进行快速有效评估,对于沥青道路养护具有重要意义。为了实现不同老化程度沥青混合料的快速准确分类,提出一种基于一维残差卷积神经网络(1D-ResNet)的沥青混合料光谱分类方法。该方法是在卷积神经网络链式结构的基础上引入残差模块来构建1D-ResNet分类模型。首先对近红外光谱数据间隔平均,并进行二阶导数(2nd D)及标准正态变量变换(SNV)预处理;然后将归一化的平均光谱、2nd D光谱及SNV光谱进行光谱序列融合;最后将融合光谱数据作为模型的输入,实现对不同老化程度沥青混合料的分类。实验结果表明:对光谱数据进行间隔平均后,1D-ResNet模型分类准确率为88.38%,采用光谱序列融合后分类准确率达98.86%,能够实现对沥青混合料的准确分类识别。 展开更多
关键词 沥青混合料 光谱分类 一维残差卷积神经网络 光谱预处理 序列融合 间隔平均法
在线阅读 下载PDF
拉曼光谱结合WGANGP-ResNet算法鉴别病原菌种类 被引量:2
7
作者 孟星志 刘亚秋 刘丽娜 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第2期542-547,共6页
快速准确识别病原菌在防止传染病的传播、帮助对抗抗菌素耐药性和改善病人预后方面起着关键作用。拉曼光谱结合机器学习算法能够简单快捷地对病原菌进行无标记检测。然而,病原菌种类和表型繁多,并且深度学习需要依赖大量样本训练,而收... 快速准确识别病原菌在防止传染病的传播、帮助对抗抗菌素耐药性和改善病人预后方面起着关键作用。拉曼光谱结合机器学习算法能够简单快捷地对病原菌进行无标记检测。然而,病原菌种类和表型繁多,并且深度学习需要依赖大量样本训练,而收集大批量病原菌拉曼光谱劳神费力,且易受荧光等因素影响。针对上述问题,提出一种基于WGAN-GP数据增强方法和ResNet结合的病原菌拉曼光谱检测模型。采用五种常见眼科病原菌的拉曼光谱。将采集到的原始数据归一化作为ResNet和传统卷积神经网络(1D-CNN)的输入,将经过SG滤波、airPLS基线校正、PCA降维等预处理后的数据作为K近邻(KNN)的输入,对比分析发现ResNet模型效果最优,其分类精度可达96%;搭建Wasserstein生成式对抗网络加梯度惩罚模型(WGAN-GP),生成大量与真实数据相似的高分辨率光谱数据。同时与偏移法、深度卷积生成式对抗神经网络(DCGAN)2种数据增强方法进行比对,证明WGAN-GP的可靠性;为验证生成数据可以丰富数据多样性,进而提高分类精度,将扩充后的数据集重新放入ResNet进行训练,最终WGAN-GP结合ResNet的分类准确率提高到99.3%。结果表明:基于ResNet的分类模型无需复杂数据预处理,在开发效率和分类精度上均有提高;改进的WGAN-GP模型适用于拉曼光谱数据增强,解决了传统数据增强方法生成光谱的有效性与类别准确性不匹配的问题,相比于GAN提高了训练过程的速度和稳定性;利用表面增强拉曼光谱技术(SERS)结合WGANGP-ResNet模型对病原菌拉曼光谱分类,减少了对大量训练数据的需求,有利于快速学习和分析低信噪比的拉曼光谱,并将光谱采集时间缩减到1/10。在临床快速、免培养鉴别病原菌方面具有重要研究意义与应用价值。 展开更多
关键词 WGAN-GP 拉曼光谱 病原菌鉴别 一维残差网络 卷积神经网络
在线阅读 下载PDF
基于双分支并联的特征融合电能质量扰动分类方法 被引量:5
8
作者 王飞 王立辉 +2 位作者 周少武 赵才 张志飞 《电力系统保护与控制》 EI CSCD 北大核心 2024年第5期178-187,共10页
为了提高对电能质量扰动信号(power quality disturbance signal,PQDs)在受到噪声和异常数据干扰时的分类准确率,提出了一种双分支并联特征融合网络的PQDs分类方法。首先,采用一维残差神经网络和一维卷积神经网络两个分支进行特征提取... 为了提高对电能质量扰动信号(power quality disturbance signal,PQDs)在受到噪声和异常数据干扰时的分类准确率,提出了一种双分支并联特征融合网络的PQDs分类方法。首先,采用一维残差神经网络和一维卷积神经网络两个分支进行特征提取。然后,通过特征融合模块将这些特征融合在一起。最终,通过分类模块对PQDs进行准确分类。相对于串联神经网络,所提方法融合特征向量,增强了特征的区分度,同时适用于并行计算,进一步提高了识别速度。仿真结果表明,所提方法在叠加信噪比为13 dB、15 dB和18 dB的PQDs分类任务中,识别率均超过95%,此外,该方法对异常数据的分类效果也具有一定的鲁棒性。 展开更多
关键词 一维卷积神经网络 一维残差神经网络 特征提取 扰动分类
在线阅读 下载PDF
改进DQN的边缘计算任务卸载策略 被引量:3
9
作者 宋兴 葛海波 马世雄 《计算机工程与设计》 北大核心 2024年第7期1964-1971,共8页
为进一步提高边缘计算(MEC)中移动设备(MD)对低时延、低能耗计算卸载任务的需求,利用深度Q学习(DQN)、长短期记忆网络(LSTM)和注意力机制,设计一种基于DQN的深度强化学习卸载算法(LA-DQN)。以最小系统总代价(时延和能耗加权和)为目标建... 为进一步提高边缘计算(MEC)中移动设备(MD)对低时延、低能耗计算卸载任务的需求,利用深度Q学习(DQN)、长短期记忆网络(LSTM)和注意力机制,设计一种基于DQN的深度强化学习卸载算法(LA-DQN)。以最小系统总代价(时延和能耗加权和)为目标建立模型,使用一维残差卷积网络(Conv1D)和带有注意力机制的LSTM网络替换DQN网络的全连接层,提取MD的状态特征,减少需要计算的参数量并加强对输入状态的重点特征信息提取,加速算法收敛并得到最优卸载策略。仿真结果表明,与DQN、Full Local、Full Offload算法相比,LA-DQN算法能够有效降低任务处理的时延和能耗。 展开更多
关键词 边缘计算 深度强化学习 计算卸载 卸载策略 注意力机制 一维残差卷积网络 全连接层
在线阅读 下载PDF
基于深度学习的航空发动机磨损部位识别方法
10
作者 苗慧慧 曹桂松 +3 位作者 孙智君 康玉祥 马佳丽 陈果 《润滑与密封》 CAS CSCD 北大核心 2023年第4期136-144,共9页
针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元,搭建一维卷积残差网络... 针对航空发动机润滑系统中摩擦副部件复杂、磨损颗粒能谱监测元素众多,靠人工经验难于进行磨损部位精确识别的问题,提出一种基于深度学习的航空发动机润滑系统磨损部位识别方法。该方法应用一维卷积核为计算单元,搭建一维卷积残差网络模型。以航空发动机润滑油中磨损颗粒能谱分析数据为输入,采用所搭建的一维卷积残差网络模型实现对能谱数据的特征提取以及航空发动机磨损部位的定位识别;以某型航空发动机润滑油中磨损颗粒实测能谱数据验证该方法的有效性,并和Resnet18、Resnet34、CNN等网络模型进行对比验证。结果表明,所提方法对航空发动机磨损部位的识别精度达到95%以上。为了验证模型的鲁棒性和泛化能力,在真实的某型航空发动机能谱数据基础上,对含氧数据和噪声数据分别进行测试,进一步说明该模型用于对磨损定位识别的有效性,具备实际应用的可行性。 展开更多
关键词 航空发动机 能谱分析 磨损 一维卷积残差网络 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部