期刊文献+
共找到502篇文章
< 1 2 26 >
每页显示 20 50 100
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测 被引量:1
1
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断 被引量:1
2
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
在线阅读 下载PDF
高光谱图像结合一维卷积神经网络的玉米大斑病早期识别
3
作者 路阳 顾福谦 +2 位作者 谷英楠 许思源 王鹏 《光谱学与光谱分析》 北大核心 2025年第8期2302-2310,共9页
大斑病在全球各大玉米产区都有出现,降低了玉米的品质和产量。该病害多在病斑明显时识别,难以及时防治。本文提出一维卷积神经网络(1DCNN)高光谱模型,实现早期识别。以玉米大斑病为研究对象,手动接种大斑病后,选取吐丝期的玉米叶片进行... 大斑病在全球各大玉米产区都有出现,降低了玉米的品质和产量。该病害多在病斑明显时识别,难以及时防治。本文提出一维卷积神经网络(1DCNN)高光谱模型,实现早期识别。以玉米大斑病为研究对象,手动接种大斑病后,选取吐丝期的玉米叶片进行试验,此时期刚显现病斑特征,但无法通过视觉属性观察看出是何种病害。首先采用SOC710E光谱仪采集高光谱图像,通过选取感兴趣区域获得玉米叶片的健康和大斑病两种光谱数据。使用SG卷积平滑、多元散射校正(MSC)、标准正态变换(SNV)和去趋势算法(DT)等四种光谱预处理方法,以去除光谱数据中的噪声。分别使用随机森林(RF)和K最近邻(KNN)两种监督学习算法,以准确率作为评价指标,对高光谱图像进行识别。结果表明,MSC为优选的预处理方法,两种模型预测准确率分别为88.13%和86.26%。然后采用竞争性自适应重加权算法对玉米叶片光谱数据进行特征波长提取,从原始的260个波长中优选出48个特征波长。最后建立一维卷积深度学习模型进行分类,识别准确率达到99.61%,相较于传统分类模型KNN、RF、偏最小二乘判别分析(PLS-DA)、反向传播神经网络(BP)、支持向量机(SVM),提出的模型识别准确率分别提高了5.94%、6.88%、6.48%、8.27%、12.12%。高光谱技术结合深度学习模型可以更有效识别玉米大斑病,为实现玉米病害早期识别提供了一种新的思路和方法。 展开更多
关键词 一维卷积神经网络 高光谱图像 玉米 大斑病
在线阅读 下载PDF
基于一维卷积神经网络的钢轨波磨迁移诊断方法
4
作者 王阳 肖宏 +3 位作者 张智海 迟义浩 魏绍磊 方树薇 《铁道学报》 北大核心 2025年第4期115-123,共9页
监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激... 监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激励下车体振动特性,建立车辆-轨道刚柔耦合模型,获取车体垂向加速度仿真数据集。基于一维卷积神经网络搭建钢轨波磨检测模型并在仿真数据集上进行训练,与其他几种常见的检测模型进行对比,最后将模型迁移到实测车体垂向加速度数据集上实现对钢轨波磨的诊断。研究结果表明,钢轨波磨激励的振动能量在运行方向左侧和右侧空气弹簧对应的地板表面位置基本相同,通过车体垂向振动加速度信号无法区分左右两股钢轨的差异。与SVM、LSTM及2D-CNN相比,本文提出的钢轨波磨检测模型精度最高,单个样本推理时间仅为1.00 ms,钢轨波磨识别准确度达92.38%。 展开更多
关键词 钢轨波磨 车载检测 数据驱动 迁移学习 一维卷积神经网络(1D-CNN)
在线阅读 下载PDF
双通道小波核-卷积神经网络轧机设备轴承诊断方法
5
作者 时培明 肖立峰 +2 位作者 许学方 何俊杰 彭荣荣 《机械科学与技术》 北大核心 2025年第2期335-344,共10页
轧机设备运行过程中产生的振动信号和声音信号包含丰富的状况信息,而使用单类传感器采集信号难以捕获轧机的全面信息。针对上述问题,提出一种基于双通道异源信息融合的小波核-卷积神经网络算法。首先,将采集的振动信号转换成二维小波时... 轧机设备运行过程中产生的振动信号和声音信号包含丰富的状况信息,而使用单类传感器采集信号难以捕获轧机的全面信息。针对上述问题,提出一种基于双通道异源信息融合的小波核-卷积神经网络算法。首先,将采集的振动信号转换成二维小波时频图作为二维卷积神经网络通道的输入;再设计一种小波核网络Wavelet kernel network (WKN)作为一维通道对声音信号进行处理;最后,将各通道提取的特征向量在汇聚层进行拼接,信息融合后实现对轧机设备的轴承状况诊断。为了验证该算法的有效性,搭建轧机状况实验平台。实验结果表明,在变工况下,双通道小波核-卷积神经融合网络对轧机轴承故障诊断准确率可达99%。 展开更多
关键词 故障诊断 轧机轴承 双通道卷积神经网络 小波卷积
在线阅读 下载PDF
基于一维卷积神经网络与自编码算法的松属物种鉴别机制
6
作者 陈冬英 翁伟雄 +1 位作者 陈培亮 魏建崇 《生态学报》 北大核心 2025年第5期2401-2411,共11页
松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并... 松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并结合一维连续型卷积神经网络(1D⁃CS⁃CNN)与自编码技术的松属物种检测机制。使用更高效率的连续型结构替代传统1D⁃CNN模型中隐含层结构,并针对松属NIRS数据适应性改进为1D⁃CS⁃CNN模型,使其可直接应用于一维NIRS数据。结合自编码器的重构误差设计一种考虑未知类别的松属物种鉴别方法,通过待测样本的自编码重构误差来解决卷积神经网络置信度过高的问题,将修正的置信度与预先设定的阈值进行比较,判断该样本是否为未知品种。实验结果表明,1D⁃CS⁃CNN训练集与测试集准确率均达到近100%,损失值收敛为0.015,改进后的1D⁃CS⁃CNN模型识别速度更快;同时,自编码模型对未知类别松属检测机制识别率为99%。实验结果证明,该模型可快速高效分类出不同松属物种,同时检测出松属新物种。 展开更多
关键词 松属物种 近红外光谱(NIRS) 自编码器 一维连续卷积神经网络(1D⁃CS⁃CNN) 鉴别
在线阅读 下载PDF
一维卷积神经网络在机械故障特征提取中的可解释性研究
7
作者 王芳珍 张小丽 +1 位作者 赵琦武 王保建 《西安交通大学学报》 北大核心 2025年第7期24-35,共12页
针对一维卷积神经网络在机械故障诊断中的内部决策和推断过程未知,导致结果可解释性与可信度不足的问题,从信号特征提取的视角建立信号分析与神经网络之间的相似性联系,通过提取神经网络卷积层权重,观察信号时域、频域特征随网络层的变... 针对一维卷积神经网络在机械故障诊断中的内部决策和推断过程未知,导致结果可解释性与可信度不足的问题,从信号特征提取的视角建立信号分析与神经网络之间的相似性联系,通过提取神经网络卷积层权重,观察信号时域、频域特征随网络层的变化规律,从而揭示神经网络特征提取的本质,并采用实验测试数据和凯斯西储大学轴承公开数据进行验证。结果表明:卷积核可以等效为有限脉冲滤波器,最大池化层能够满足简单二分类任务中神经网络的非线性化要求,此时的卷积层无需添加激活函数;神经网络能够通过逐层提高频率分辨率,寻找到接近理论故障特征频率的频率成分,此行为与傅里叶变换存在相似性;当频谱范围最终分解到1~3倍故障特征频率时,能够更好地完成识别任务。该研究可为揭示卷积神经网络的“黑盒”机制与可解释性提供新的思路与方法。 展开更多
关键词 可解释性 一维卷积神经网络 傅里叶变换 故障诊断 频域
在线阅读 下载PDF
基于二维卷积神经网络的城市暴雨内涝积水模拟预报研究
8
作者 柴永丰 陈敏 +4 位作者 郝彦龙 肖家清 邓蔚珂 吕凯 师鹏飞 《水文》 北大核心 2025年第3期17-24,共8页
城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立... 城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立时空数据(降雨和地形)驱动的基于二维卷积神经网络的城市内涝积水预测模型,实现研究区全域网格的逐时段模拟。结果表明,模型对积水时空预测性能表现优异,卡帕系数等空间性能指标高于0.80,且半数指标高于0.95,大部分积水点积水深时间序列纳什效率系数为0.80~0.99。相较物理过程模型,训练(率定)和预测效率分别提升77.7倍、285.2倍。研究成果可为城市内涝实时预报、即时预警、快速推演提供技术参考。 展开更多
关键词 城市内涝模拟 卷积神经网络(2DCNN) 机器学习 时空特征 快速预报
在线阅读 下载PDF
基于一维卷积神经网络的雷达个体识别算法
9
作者 杨孟璋 农丽萍 +1 位作者 李然 王俊义 《计算机工程与设计》 北大核心 2025年第5期1281-1288,共8页
为解决利用长序列雷达信号对雷达辐射源个体进行分类识别的问题,提出一种融合注意力机制和残差的一维卷积深度神经网络(1CDNN)模型,利用一维卷积从原始长序列雷达信号中直接提取特征,减少模型的参数量。引入注意力机制帮助模型学习利用... 为解决利用长序列雷达信号对雷达辐射源个体进行分类识别的问题,提出一种融合注意力机制和残差的一维卷积深度神经网络(1CDNN)模型,利用一维卷积从原始长序列雷达信号中直接提取特征,减少模型的参数量。引入注意力机制帮助模型学习利用全局信息选择关键特征,提高模型的分类识别精度。引入残差使得模型在缓解梯度消失的同时更容易进行优化和训练。实验结果表明,所提模型在实际采集数据集上具有结构简单、训练难度低、分类识别精度高和收敛速度快的优点。 展开更多
关键词 雷达辐射源识别 长序列雷达信号 深度学习 端到端 一维卷积神经网络 注意力机制 残差学习
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
10
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于一维卷积神经网络的家庭用户特征识别方法
11
作者 许继和 朱亮 +2 位作者 晏依 周佳楠 温和 《中国测试》 北大核心 2025年第6期25-30,66,共7页
智能电能表提供用户的用电量数据,可以反应用户的用电特征,从而为家庭用户特征识别提供基础。为实现家庭用户特征识别,该文研究基于智能电能表用电数据的家庭用户特征识别分析方法,设计一种适合于智能电能表用电时间序列数据的一维卷积... 智能电能表提供用户的用电量数据,可以反应用户的用电特征,从而为家庭用户特征识别提供基础。为实现家庭用户特征识别,该文研究基于智能电能表用电数据的家庭用户特征识别分析方法,设计一种适合于智能电能表用电时间序列数据的一维卷积神经网络模型,以智能电能表采集的用户用电数据(一维数据序列)为输入,在网络的前两个卷积层之后去掉池化层以实现早期特征的保存,实现对家庭用户特征的准确分类。为证明本文提出方法的有效性,该文在公开数据集上进行实验,实验表明,该文的方法在多个家庭用户特征分类上获得55%~78%的准确率。 展开更多
关键词 深度学习 一维卷积神经网络 分类 家庭用户特征 智能电能表
在线阅读 下载PDF
基于一维残差卷积神经网络的Pi2脉动识别模型 被引量:1
12
作者 张怡悦 邹自明 方少峰 《空间科学学报》 北大核心 2025年第1期66-81,共16页
Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,... Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,如何有效地判断某段地磁场分量观测数据中是否有Pi2脉动发生,是构建Pi2脉动识别模型的关键.利用子午工程磁通门磁力仪观测的地磁场分量数据,基于一维残差卷积神经网络(One-Dimensional Residual Convolutional Neural Network,1D-ResCNN),构建了一个端到端的Pi2脉动识别模型,用于判别某段地磁场分量观测数据中是否有Pi2脉动发生.实验结果表明,该模型与现有公开发表的Pi2脉动机器学习识别模型相比,具有更高的识别准确率和更低的虚报率、漏报率. 展开更多
关键词 Pi2脉动 Pi2脉动识别模型 一维残差卷积神经网络
在线阅读 下载PDF
基于PCC-VMD的一维卷积神经网络的轴承早期故障诊断
13
作者 邓志超 张清华 于军 《机床与液压》 北大核心 2025年第2期9-15,共7页
针对轴承早期微弱故障信号容易被强噪声环境掩盖、特征难以提取的问题,提出一种基于皮尔逊相关系数和变分模态分解的一维卷积神经网络的早期故障诊断方法。采用VMD对原始振动信号进行变分模态分解;计算各模态分量与原始信号的皮尔逊相... 针对轴承早期微弱故障信号容易被强噪声环境掩盖、特征难以提取的问题,提出一种基于皮尔逊相关系数和变分模态分解的一维卷积神经网络的早期故障诊断方法。采用VMD对原始振动信号进行变分模态分解;计算各模态分量与原始信号的皮尔逊相关系数,再根据相关系数阈值去掉噪声分量并对信号进行重构,最后对重构信号进行傅里叶变换并输入到一维卷积神经网络中,利用一维卷积神经网络对轴承早期故障进行诊断。利用所提方法对西储大学(CWRU)轴承数据集的滚动轴承故障数据进行分析,诊断准确率达到99%以上,验证了所提方法对滚动轴承早期故障诊断的有效性。 展开更多
关键词 皮尔逊相关系数 变分模态分解 一维卷积神经网络(1D-CNN) 早期故障诊断
在线阅读 下载PDF
基于卷积神经网络的放射性核素识别算法
14
作者 朱岳武 梁杰 +3 位作者 董喆 刘尔聃 李林珊 姜麟泉 《兵工自动化》 北大核心 2025年第1期62-64,101,共4页
为实现对低计数、多种类的复杂放射性核素的准确识别,引入卷积神经网络(convolutional neural network,CNN)搭建针对低计数、多种类放射性核素识别模型。利用蒙特卡罗仿真创建由^(241)Am、^(133)Ba、^(57)Co、^(60)Co、^(137)Cs、^(152... 为实现对低计数、多种类的复杂放射性核素的准确识别,引入卷积神经网络(convolutional neural network,CNN)搭建针对低计数、多种类放射性核素识别模型。利用蒙特卡罗仿真创建由^(241)Am、^(133)Ba、^(57)Co、^(60)Co、^(137)Cs、^(152)Eu以及40K组成的单源、两源以及三源共63种不同种类放射性核素能谱数据库。利用仿真训练集和仿真验证集样本完成CNN训练及超参数优化,利用测试集样本验证模型性能。结果表明,该模型对低计数、多种类放射性核素具有良好的识别性能。 展开更多
关键词 放射性素识别 卷积神经网络 蒙特卡罗仿真
在线阅读 下载PDF
基于二维卷积神经网络的结构加速度数据异常检测研究
15
作者 麻胜兰 钟建坤 +1 位作者 刘昱昊 郑翔 《建筑科学与工程学报》 北大核心 2025年第1期112-120,共9页
为提高结构加速度数据异常检测的效率和准确率,提出基于二维卷积神经网络(2D-CNN)的结构加速度数据异常检测方法。通过二维桁架数值模型验证了所提方法的有效性,并研究了2D-CNN卷积层数和加速度噪声水平对数据异常检测效果的影响。结果... 为提高结构加速度数据异常检测的效率和准确率,提出基于二维卷积神经网络(2D-CNN)的结构加速度数据异常检测方法。通过二维桁架数值模型验证了所提方法的有效性,并研究了2D-CNN卷积层数和加速度噪声水平对数据异常检测效果的影响。结果表明:提出的结构加速度数据异常检测方法能快速准确区分加速度数据异常类型,异常检测的准确率可达97%以上;对于包含信息复杂、数据规模大的样本,采用4层以上的2D-CNN有助于提高加速度数据异常检测的准确率,采用5层卷积层的2D-CNN对数据异常辨识精度可达98%;当加速度信噪比大于1时,数据异常检测准确率均在90%以上,当加速度信噪比为10时,准确率在97%以上,所提方法具有良好的容噪性和鲁棒性;采用2D-CNN的数据异常检测方法可为传感器网络的有效运行提供技术支持。 展开更多
关键词 结构健康监测 卷积神经网络 桁架结构 深度学习 加速度 数据异常检测
在线阅读 下载PDF
基于卷积神经网络的高层建筑智能控制算法研究 被引量:1
16
作者 刘康生 涂建维 +1 位作者 张家瑞 李召 《重庆大学学报》 北大核心 2025年第1期66-75,共10页
浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题。为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑... 浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题。为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑智能控制算法,并完成高精度网络模型训练和1D-CNN数据特征可视化;以20层benchmark模型为对象,研究了不同工况下1D-CNN深度学习智能控制算法的减震效果,并与BP(back propagation,BP)和RBF(radial basis function,RBF)等浅层学习进行对比。结果表明,1D-CNN凭借一维卷积和池化特性,可自动提取数据深层次特征并对海量数据进行降维处理;在外界激励作用下,1D-CNN控制器加速度和位移最高减震率分别为69.0%和55.6%,控制性能远高于BP和RBF;改变激励作用后,3种控制器控制性能均有所降低,但1D-CNN性能降幅最小且减震率最高,说明1D-CNN具备更好的泛化性能。 展开更多
关键词 深度学习 一维卷积神经网络 智能控制 数据特征可视化 泛化性能
在线阅读 下载PDF
基于拉曼光谱的变压器混合故障特征气体的改进卷积神经网络定量方法
17
作者 陈新岗 张文轩 +4 位作者 马志鹏 张知先 万福 敖怡 曾慧敏 《光谱学与光谱分析》 北大核心 2025年第4期932-940,共9页
激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低... 激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低信号维度,但也会造成其特征部分缺失或改变。针对上述问题,提出基于改进一维卷积神经网络与最小二乘支持向量回归相融合的拉曼光谱定量分析方法,即引入全局均值池化与最小二乘支持向量回归改进传统卷积神经网络,并运用Dropout方法提高模型泛化性能,防止过拟合。设计并搭建变压器故障特征气体拉曼光谱检测平台,采集7种故障特征气体及N_(2)、O_(2)混合气体的拉曼信号,在谱图2900 cm^(-1)频移附近,CH_(4)、C_(2)H_(6)气体呈现谱峰重叠,且变压器过热或局部放电故障发生时,会产生主要故障特征气体CH_(4),选择不同含量比例下的CH_(4)、C_(2)H_(6)混合气体作为研究对象具有代表性,按不同比例配制146组不同含量的CH_(4)、C_(2)H_(6)混合气体样本,检测时选用氮气作为标气,采集不同含量比例下混合气体样本的拉曼光谱数据,利用光谱数据增强方法,构建适用于深度神经网络的气体样本数据集。通过不断实验,优化网络结构参数与网络权重,完成模型训练并测试其预测效果,与多种定量模型进行对比分析,并研究光谱预处理对不同定量模型的影响,进而评估模型性能。结果表明,使用原始数据集建模时,改进卷积神经网络模型的预测精确度与回归拟合优度最佳,决定系数可达0.9998,均方根误差仅为0.0005 MPa;使用预处理后数据集建模时,改进卷积神经网络模型均方根误差为0.0023 MPa,相比使用原始数据集建模误差上升了0.0018,而传统方法误差均有所下降。该研究结果表明,所提方法与传统拉曼光谱定量方法相比,集成光谱预处理、特征提取和定量分析过程,在确保预测精确度的基础上,简化光谱分析流程,为快速、准确分析变压器混合故障特征气体提供了新的思路与参考。 展开更多
关键词 变压器 特征气体 拉曼光谱 改进一维卷积神经网络 定量分析
在线阅读 下载PDF
基于近红外光谱数据的一维卷积神经网络模型研究 被引量:8
18
作者 唐杰 罗彦波 +6 位作者 李翔宇 陈云璨 王鹏 卢天 纪晓波 庞永强 朱立军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期731-736,共6页
近红外光谱技术已被广泛应用于各种检测行业,但传统方法难以汇集光谱关键信息,导致模型预测误差较大。为减少误差,基于452个茄科植物,以化学成分为目标,探索了一维卷积神经网络(1DCNN)在近红外数据上的回归模型研究。经参数优化,总结了... 近红外光谱技术已被广泛应用于各种检测行业,但传统方法难以汇集光谱关键信息,导致模型预测误差较大。为减少误差,基于452个茄科植物,以化学成分为目标,探索了一维卷积神经网络(1DCNN)在近红外数据上的回归模型研究。经参数优化,总结了一套兼顾精度与训练效率的1DCNN模型参数,为后续模型研究提供参考。模型测试集的均方根误差为0.02~0.49,平均相对误差为0.8%~1.7%,远小于历史文献。相比传统方法,1DCNN可充分利用全部近红外谱图数据,且建模简单,模型预测能力强。该工作能为近红外光谱相关研究提供新的数据处理思路,也能促进该技术的应用与发展。 展开更多
关键词 一维卷积神经网络 近红外光谱 深度学习
在线阅读 下载PDF
基于一维卷积和图神经网络的配电网故障区段定位方法 被引量:6
19
作者 何小龙 高红均 +3 位作者 黄媛 高艺文 王仁浚 刘俊勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第17期27-39,共13页
快速、准确地定位故障区段对配电网的安全运行至关重要。传统故障定位方法容错率低、耗费时间长,多数深度学习算法对拓扑变动的泛化性不足。基于此,提出了一种基于一维卷积神经网络(one-dimensional convolutional neural network,1D-C... 快速、准确地定位故障区段对配电网的安全运行至关重要。传统故障定位方法容错率低、耗费时间长,多数深度学习算法对拓扑变动的泛化性不足。基于此,提出了一种基于一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)和图神经网络(graph neural network,GNN)的配电网故障区段定位方法。该方法将配电网原始信息与GNN等深度学习算法相结合进行建模。首先利用基于注意力的时空图卷积网络从不同的时空尺度上对遥测数据进行故障特征提取,使用图注意力网络来融合多源遥信数据。然后,利用1D-CNN来调整特征输出维度以实现节点特征到故障支路的映射。最后,通过增设全连接网络来输出故障区段定位结果。依托于Matlab/Simulink平台搭建10 kV中性点不接地配电网系统进行仿真和测试。结果表明,所提方法具有优越的定位性能,能够灵活适用于各类低、中、高阻性接地故障场景,对系统拓扑变动具有强大的泛化能力以及对故障数据不完备的鲁棒性好。 展开更多
关键词 配电网 故障区段定位 一维卷积 神经网络 拓扑变动 数据不完备
在线阅读 下载PDF
基于同步辐射X射线荧光光谱与一维卷积神经网络的癌症筛查方法 被引量:4
20
作者 魏超杰 李超 +5 位作者 解宏鑫 王欣 李玉锋 李玉文 刘杨 王伟 《中国无机分析化学》 CAS 北大核心 2024年第1期104-111,共8页
癌症是全球范围内引起高发病率与高死亡率的疾病之一。现有癌症检测方法耗时、昂贵、专业人员依赖性强,开发一种无损、快速筛查方法非常重要。在前期工作基础上,发展了基于同步辐射X射线荧光光谱技术(SRXRF)与深度学习技术结合的一种非... 癌症是全球范围内引起高发病率与高死亡率的疾病之一。现有癌症检测方法耗时、昂贵、专业人员依赖性强,开发一种无损、快速筛查方法非常重要。在前期工作基础上,发展了基于同步辐射X射线荧光光谱技术(SRXRF)与深度学习技术结合的一种非靶标金属组学方法筛查癌症患者。首先,分析控制组与癌症组共269份血清样本的SRXRF谱线,得到Ca、Mn、Zn、Ge、Br在两类人群中具有代表性差异,可以作为癌症筛查的标志物;其次,对于平均光谱进行归一化(Normalization)、迭代自适应加权惩罚最小二乘法(airPLS)、Savitzky-Golay平滑(SG)、标准正态变换(SNV)的预处理,并建立偏最小二乘判别分析(PLSDA)、K近邻法(KNN)、软独立建模分类法(SIMCA)的化学计量学模型,三种模型对癌症筛查的最优准确率分别为89.89%、93.26%、90.95%;最后,基于像素级光谱,搭建三种一维卷积神经网络(1DCNN)模型,三种模型准确率分别为93.56%、95.24%、93.27%,相对于化学计量学模型均有所提高,增加卷积层的数量有助于数据特征提取,模型准确率提高了1.68%。将三种模型卷积层提取获得的特征进行t-分布随机邻域嵌入算法(tSNE)降维可视化,得到1DCNN提取的特征具有显著可分性,SRXRF结合1DCNN模型开发的非靶标金属组学方法在实现癌症的快速筛查方面具有潜力。 展开更多
关键词 癌症筛查 血清 X射线荧光光谱 一维卷积神经网络 非靶标金属组学
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部