期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
基于一维卷积神经网络的钢轨波磨迁移诊断方法
1
作者 王阳 肖宏 +3 位作者 张智海 迟义浩 魏绍磊 方树薇 《铁道学报》 北大核心 2025年第4期115-123,共9页
监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激... 监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激励下车体振动特性,建立车辆-轨道刚柔耦合模型,获取车体垂向加速度仿真数据集。基于一维卷积神经网络搭建钢轨波磨检测模型并在仿真数据集上进行训练,与其他几种常见的检测模型进行对比,最后将模型迁移到实测车体垂向加速度数据集上实现对钢轨波磨的诊断。研究结果表明,钢轨波磨激励的振动能量在运行方向左侧和右侧空气弹簧对应的地板表面位置基本相同,通过车体垂向振动加速度信号无法区分左右两股钢轨的差异。与SVM、LSTM及2D-CNN相比,本文提出的钢轨波磨检测模型精度最高,单个样本推理时间仅为1.00 ms,钢轨波磨识别准确度达92.38%。 展开更多
关键词 钢轨波磨 车载检测 数据驱动 迁移学习 一维卷积神经网络(1D-CNN)
在线阅读 下载PDF
基于一维卷积神经网络与自编码算法的松属物种鉴别机制
2
作者 陈冬英 翁伟雄 +1 位作者 陈培亮 魏建崇 《生态学报》 北大核心 2025年第5期2401-2411,共11页
松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并... 松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并结合一维连续型卷积神经网络(1D⁃CS⁃CNN)与自编码技术的松属物种检测机制。使用更高效率的连续型结构替代传统1D⁃CNN模型中隐含层结构,并针对松属NIRS数据适应性改进为1D⁃CS⁃CNN模型,使其可直接应用于一维NIRS数据。结合自编码器的重构误差设计一种考虑未知类别的松属物种鉴别方法,通过待测样本的自编码重构误差来解决卷积神经网络置信度过高的问题,将修正的置信度与预先设定的阈值进行比较,判断该样本是否为未知品种。实验结果表明,1D⁃CS⁃CNN训练集与测试集准确率均达到近100%,损失值收敛为0.015,改进后的1D⁃CS⁃CNN模型识别速度更快;同时,自编码模型对未知类别松属检测机制识别率为99%。实验结果证明,该模型可快速高效分类出不同松属物种,同时检测出松属新物种。 展开更多
关键词 松属物种 近红外光谱(NIRS) 自编码器 一维连续卷积神经网络(1D⁃CS⁃CNN) 鉴别
在线阅读 下载PDF
基于二维卷积神经网络的城市暴雨内涝积水模拟预报研究
3
作者 柴永丰 陈敏 +4 位作者 郝彦龙 肖家清 邓蔚珂 吕凯 师鹏飞 《水文》 北大核心 2025年第3期17-24,共8页
城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立... 城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立时空数据(降雨和地形)驱动的基于二维卷积神经网络的城市内涝积水预测模型,实现研究区全域网格的逐时段模拟。结果表明,模型对积水时空预测性能表现优异,卡帕系数等空间性能指标高于0.80,且半数指标高于0.95,大部分积水点积水深时间序列纳什效率系数为0.80~0.99。相较物理过程模型,训练(率定)和预测效率分别提升77.7倍、285.2倍。研究成果可为城市内涝实时预报、即时预警、快速推演提供技术参考。 展开更多
关键词 城市内涝模拟 卷积神经网络(2dcnn) 机器学习 时空特征 快速预报
在线阅读 下载PDF
基于PCC-VMD的一维卷积神经网络的轴承早期故障诊断
4
作者 邓志超 张清华 于军 《机床与液压》 北大核心 2025年第2期9-15,共7页
针对轴承早期微弱故障信号容易被强噪声环境掩盖、特征难以提取的问题,提出一种基于皮尔逊相关系数和变分模态分解的一维卷积神经网络的早期故障诊断方法。采用VMD对原始振动信号进行变分模态分解;计算各模态分量与原始信号的皮尔逊相... 针对轴承早期微弱故障信号容易被强噪声环境掩盖、特征难以提取的问题,提出一种基于皮尔逊相关系数和变分模态分解的一维卷积神经网络的早期故障诊断方法。采用VMD对原始振动信号进行变分模态分解;计算各模态分量与原始信号的皮尔逊相关系数,再根据相关系数阈值去掉噪声分量并对信号进行重构,最后对重构信号进行傅里叶变换并输入到一维卷积神经网络中,利用一维卷积神经网络对轴承早期故障进行诊断。利用所提方法对西储大学(CWRU)轴承数据集的滚动轴承故障数据进行分析,诊断准确率达到99%以上,验证了所提方法对滚动轴承早期故障诊断的有效性。 展开更多
关键词 皮尔逊相关系数 变分模态分解 一维卷积神经网络(1D-CNN) 早期故障诊断
在线阅读 下载PDF
基于一维卷积神经网络的螺旋铣刀具磨损监测 被引量:21
5
作者 汪海晋 尹宗宇 +2 位作者 柯臻铮 郭英杰 董辉跃 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第5期931-939,共9页
基于传统机器学习的螺旋铣刀具磨损监测方法需要复杂的特征提取和丰富的经验知识,不同磨损阶段具有相同的错误分类代价,针对这些问题,结合电流信号一维性特点,提出基于一维卷积神经网络(1D CNN)和代价敏感学习的螺旋铣刀具磨损监测方法... 基于传统机器学习的螺旋铣刀具磨损监测方法需要复杂的特征提取和丰富的经验知识,不同磨损阶段具有相同的错误分类代价,针对这些问题,结合电流信号一维性特点,提出基于一维卷积神经网络(1D CNN)和代价敏感学习的螺旋铣刀具磨损监测方法.采集机器人螺旋铣末端执行器主轴、公转轴和进给轴电流作为监测信号,并采用滑动窗口法进行样本划分,在降低网络容量的同时增加样本数量和多样性;在网络损失函数中引入代价矩阵并增加急剧磨损阶段的错误分类代价,使得1D CNN具有代价敏感性;直接将电流时域信号输入1D CNN,网络可以自动提取刀具磨损特征,并将特征提取和不同磨损阶段分类融合在一起.试验结果表明,在机器人螺旋铣系统中,该方法的刀具磨损监测准确率为99.29%,在急剧磨损阶段的查全率为99.60%. 展开更多
关键词 螺旋铣 刀具磨损监测 电流信号 一维卷积神经网络(1D CNN) 代价敏感学习
在线阅读 下载PDF
基于深度多尺度一维卷积神经网络的雷达舰船目标识别 被引量:31
6
作者 郭晨 简涛 +2 位作者 徐从安 何友 孙顺 《电子与信息学报》 EI CSCD 北大核心 2019年第6期1302-1309,共8页
为满足雷达舰船目标识别的高实时性和高泛化性的需求,该文提出了一种基于深度多尺度1维卷积神经网络的目标高分辨1维距离像(HRRP)识别方法。针对高分辨1维距离像特征提取难的问题,所提方法通过共享卷积核的权值,使用多尺度的卷积核提取... 为满足雷达舰船目标识别的高实时性和高泛化性的需求,该文提出了一种基于深度多尺度1维卷积神经网络的目标高分辨1维距离像(HRRP)识别方法。针对高分辨1维距离像特征提取难的问题,所提方法通过共享卷积核的权值,使用多尺度的卷积核提取不同精细度的特征,并构造中心损失函数来提高特征的分辨能力。实验结果表明,该模型可以显著提高目标在非理想条件下的识别正确率,克服目标姿态角敏感性问题,具有良好的鲁棒性和泛化性。 展开更多
关键词 雷达目标识别 高分辨1距离像 多尺度 卷积神经网络 中心损失函数
在线阅读 下载PDF
基于神经网络的二元混合液体自燃温度预测
7
作者 胡双启 郭丙宇 +1 位作者 程泽会 吴薇 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1710-1716,共7页
自燃温度(Auto-Ignition Temperature,AIT)是防火防爆安全设计的关键临界参数之一。为解决目前多数采用试验方法测量混合物AIT费时费力且有一定危险性的问题,运用定量结构性质关系方法,使用反向传播神经网络(Back Propagation Neural Ne... 自燃温度(Auto-Ignition Temperature,AIT)是防火防爆安全设计的关键临界参数之一。为解决目前多数采用试验方法测量混合物AIT费时费力且有一定危险性的问题,运用定量结构性质关系方法,使用反向传播神经网络(Back Propagation Neural Network,BPNN)和一维卷积神经网络(one-Dimensional Convolutional Neural Network,1DCNN)技术建立二元混合液体AIT预测模型。以二元混合液体的分子描述符为输入、试验测得的AIT为输出,经多种方法对模型的拟合性、稳定性和预测能力评价验证。结果表明,BPNN模型和1DCNN模型均有良好的预测能力,其均方根误差分别为4.780℃和9.603℃,拟合度与5折交叉验证拟合度差值分别为0.058和0.040,表明BPNN模型有更好的拟合能力,1DCNN模型有良好的稳定性。 展开更多
关键词 安全工程 反传播神经网络(BPNN) 一维卷积神经网络(1dcnn) 二元混合液体 自燃温度
在线阅读 下载PDF
基于改进神经网络与比值法融合的变压器故障诊断方法 被引量:14
8
作者 李平 胡根铭 《高电压技术》 EI CAS CSCD 北大核心 2023年第9期3898-3906,共9页
为提高采用单神经网络方法的变压器故障诊断精度,该文提出了一种基于改进神经网络与比值法融合的变压器故障诊断方法。针对深层1维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)难以适应变压器溶解气体数据的难题... 为提高采用单神经网络方法的变压器故障诊断精度,该文提出了一种基于改进神经网络与比值法融合的变压器故障诊断方法。针对深层1维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)难以适应变压器溶解气体数据的难题,搭建了改进的1D-CNN作为融合分类方法的基础分类器;为提升神经网络在变压器故障诊断中的应用性能,提出了一种融合分类模块(fusion classification module,FCM),提前筛选出可能被网络错误分类的样本并转由传统比值法进行单条数据分析;并用算例仿真验证了所提方法的可操作性和适应性。研究结果表明:与常规1维卷积神经网络、循环神经网络相比,改进的1D-CNN作为基础分类器的性能表现优异;FCM在不同数据集下对基础分类器均有相应的性能提升,对于初始准确率高于95%的基础分类器提升效果更稳定。 展开更多
关键词 1卷积神经网络 融合分类方法 比值法 变压器故障诊断 溶解气体
在线阅读 下载PDF
正则化机制下多粒度神经网络剪枝方法研究 被引量:8
9
作者 刘奇 陈莹 《电子学报》 EI CAS CSCD 北大核心 2023年第8期2202-2212,共11页
目前流行的模型压缩剪枝算法裁减的对象通常是整个卷积核.一些网络结构中存在特征图维度匹配的硬性要求,如ResNet中的残差结构主干上最后一个卷积层的卷积核个数以及Inception网络中的级联操作前所有分支上最后一个卷积层的卷积核个数... 目前流行的模型压缩剪枝算法裁减的对象通常是整个卷积核.一些网络结构中存在特征图维度匹配的硬性要求,如ResNet中的残差结构主干上最后一个卷积层的卷积核个数以及Inception网络中的级联操作前所有分支上最后一个卷积层的卷积核个数都不能改变,这直接限定了剪枝的空间.本文提出一种正则化机制下的多粒度神经网络剪枝方法,针对维度匹配限制了剪枝空间的问题,设计从粗到细的多粒度剪枝策略,在稀疏化的同时维持了处于维度匹配位置的卷积层中卷积核的数量不变.并且,本文提出一种自适应L1正则化的稀疏方式,可以使网络在更新参数的同时兼顾到网络结构的变化.稀疏化后的卷积核不仅有比原卷积核更少的参数和计算量,而且拥有更加优异的结构性质,使网络具有更高的表达能力.例如,在CIFAR-10上,针对VGG-16,相比基准网络,在计算量压缩了76.73%的情况下,准确率提高了0.19%;针对ResNet-56,在计算量压缩了82.54%的情况下,准确率只下降了0.14%.在ImageNet上,针对ResNet-50,在计算量压缩了56.95%的情况下,准确率只下降了0.48%.本文方法优于现有先进的剪枝方法. 展开更多
关键词 卷积神经网络 正则化 剪枝 度匹配 自适应L1正则化
在线阅读 下载PDF
基于Sentinel-1A影像和一维CNN的中国南方生长季早期作物种类识别 被引量:17
10
作者 赵红伟 陈仲新 +1 位作者 姜浩 刘佳 《农业工程学报》 EI CAS CSCD 北大核心 2020年第3期169-177,共9页
作物的早期识别对粮食安全至关重要。在以往的研究中,中国南方作物早期识别面临的主要挑战包括:1)云层覆盖时间长、地块尺寸小且作物类型丰富;2)缺少高时空分辨率合成孔径雷达(synthetic aperture radar,SAR)数据。欧洲航天局Sentinel-1... 作物的早期识别对粮食安全至关重要。在以往的研究中,中国南方作物早期识别面临的主要挑战包括:1)云层覆盖时间长、地块尺寸小且作物类型丰富;2)缺少高时空分辨率合成孔径雷达(synthetic aperture radar,SAR)数据。欧洲航天局Sentinel-1A(S1A)卫星提供的SAR图像具有12 d的重访周期,空间分辨率达10 m,为中国南方作物早期识别提供了新的机遇。为在作物早期识别中充分利用S1A影像的时间特征,本研究提出一维卷积神经网络(one-dimensional convolutional neural network,1D CNN)的增量训练方法:首先利用生长季内全时间序列数据来训练1D CNN的超参数,称为分类器;然后从生长季内第一次S1A影像获取开始,在每个数据获取时间点输入该点之前(包括该点)生长季内所有数据训练分类器在该点的其他参数。以中国湛江地区2017年生长季为研究实例,分别基于VV、VH和VH+VV,评估不同极化数据在该地区的作物分类效果。为验证该方法的有效性,本研究同时应用经典的随机森林(random forest,RF)模型对研究区进行试验。结果表明:1)基于VH+VV、VH和VV极化数据的分类精度依次降低,其中,基于VH+VV后向散射系数时间序列1D CNN和RF测试结果的Kappa系数最大值分别为0.924和0.916,说明S1A时间序列数据在该地区作物分类任务中有效;2)在研究区域内2017年生长季早期,基于1D CNN和RF的5种作物的F-measure均达到0.85及以上,说明本文所构建的1D CNN在该地区主要作物早期分类任务中有效。研究结果证明,针对中国南方作物早期分类,本研究提出的1D CNN训练方案可行。研究结果可为深度学习在作物早期分类任务中的应用提供参考。 展开更多
关键词 作物 遥感 识别 早期 一维卷积神经网络(1D CNN) 深度学习 合成孔径雷达 Sentinel-1
在线阅读 下载PDF
基于1DDCNN和PCA信息融合的滚动轴承FLHI智能提取方法 被引量:6
11
作者 罗鹏 胡茑庆 +2 位作者 沈国际 程哲 周子骏 《振动与冲击》 EI CSCD 北大核心 2021年第8期143-149,共7页
滚动轴承故障预测方法的核心在于健康指数(HI)的构建,绝大部分已经提出的HI都是基于专家经验人工构造的,且往往只能适用于部件某一特定退化阶段的趋势分析。为解决上述问题,结合振动信号的一维特性,提出一种基于一维深度卷积神经网络(1D... 滚动轴承故障预测方法的核心在于健康指数(HI)的构建,绝大部分已经提出的HI都是基于专家经验人工构造的,且往往只能适用于部件某一特定退化阶段的趋势分析。为解决上述问题,结合振动信号的一维特性,提出一种基于一维深度卷积神经网络(1DDCNN)结合主成分分析(PCA)的滚动轴承全寿命健康指数(FLHI)智能提取法;利用1DDCNN对原始时域信号自适应提取特征,深度挖掘能够表征研究对象健康状态的退化特征矩阵,而后利用PCA法对提取的特征矩阵进行融合,从而实现研究对象的FLHI智能提取。滚动轴承试验振动信号实测结果表明,相较于传统健康指数,FLHI在趋势性、鲁棒性和单调性方面更具有优势。 展开更多
关键词 一维深度卷积神经网络(1Ddcnn) 主成分分析(PCA) 全寿命健康指数(FLHI) 智能提取
在线阅读 下载PDF
基于并行1DCNN的滚动轴承故障诊断研究 被引量:18
12
作者 刘伟 单雪垠 +2 位作者 李双喜 张志华 姚思雨 《机电工程》 CAS 北大核心 2021年第12期1572-1578,共7页
滚动轴承是旋转机械中常用的零部件,由于其工作环境恶劣,极易发生故障,为此,提出了一种基于并行1DCNN(one-dimensional convolutional neural network)的滚动轴承故障诊断方法。首先,对滚动轴承振动信号进行了处理,将其分为训练集和测试... 滚动轴承是旋转机械中常用的零部件,由于其工作环境恶劣,极易发生故障,为此,提出了一种基于并行1DCNN(one-dimensional convolutional neural network)的滚动轴承故障诊断方法。首先,对滚动轴承振动信号进行了处理,将其分为训练集和测试集;然后,构建了由两个通道组成的并行1DCNN模型,两通道可以分别获取振动信号的时域信息和频域信息,提取时域信息时使用相对较小的卷积核,而提取频域信息时使用相对较大的卷积核,并使用全局最大池化层替换了传统的全连接层;最后,用训练好的并行1DCNN模型对凯斯西储大学滚动轴承测试集数据进行了处理;同时为了验证并行1DCNN模型的故障诊断效果,将该模型与传统的CNN模型进行了比较。研究结果表明:并行1DCNN模型的故障诊断精度高于0.996,与传统单通道CNN模型相比,并行1DCNN模型可以充分利用所提取的时域和频域特征信息,具有更加出色的故障诊断能力。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络 1dcnn 深度学习 特征提取
在线阅读 下载PDF
结合注意力机制和特征融合1DCNN的脑电情感识别 被引量:2
13
作者 闫超 张雪英 +2 位作者 张静 陈桂军 黄丽霞 《计算机工程与应用》 CSCD 北大核心 2023年第13期171-177,共7页
针对脑电情感识别领域中处理一维数据时将其映射为二维或三维数据,然后利用2DCNN或3DCNN模型进行处理和识别时,存在参数量大且参数寻优方法费时费力的问题,提出一种基于频段和脑区注意力机制的1DCNN模型。对脑电信号提取特征并采用t检... 针对脑电情感识别领域中处理一维数据时将其映射为二维或三维数据,然后利用2DCNN或3DCNN模型进行处理和识别时,存在参数量大且参数寻优方法费时费力的问题,提出一种基于频段和脑区注意力机制的1DCNN模型。对脑电信号提取特征并采用t检验进行最优特征选择;根据提取特征的结构设计了一种新型的1DCNN情感识别模型,为模型的参数选择和卷积操作提供可解释性;最后根据左、右脑区对情感反应能力的不同,提出一种脑区注意力机制,并与频段注意力机制相结合更好地关注与情感相关的脑区与频段。提出的FBA-1DCNN模型在DEAP脑电情感数据库的效价维和唤醒维二分类实验上的平均识别率分别达到了94.01%和93.55%,在效价-唤醒维四分类实验上的平均识别率达到了89.38%,比现有的1DCNN模型分别提升了2.96、3.31和7.69个百分点。 展开更多
关键词 脑电情感识别 T检验 深度学习 一维卷积神经网络(1dcnn) 注意力机制
在线阅读 下载PDF
基于改进1DCNN的煤岩识别模型研究 被引量:3
14
作者 尹玉玺 周常飞 +2 位作者 许志鹏 史春祥 胡文渊 《工矿自动化》 CSCD 北大核心 2023年第1期116-122,共7页
随着煤矿智能化建设的加速推进,煤岩高效识别已成为煤炭智能化开采亟待解决的技术难题。针对复杂煤矿地质条件下现有煤岩识别方法精度低、通用性差且难以工程应用等问题,提出了一种基于改进一维卷积神经网络(1DCNN)的煤岩识别模型。以1D... 随着煤矿智能化建设的加速推进,煤岩高效识别已成为煤炭智能化开采亟待解决的技术难题。针对复杂煤矿地质条件下现有煤岩识别方法精度低、通用性差且难以工程应用等问题,提出了一种基于改进一维卷积神经网络(1DCNN)的煤岩识别模型。以1DCNN为基础,使用多个连续卷积层提取一维振动信号特征,通过全局均值池化(GAP)层代替全连接层,以减少模型训练参数,节省计算资源,同时采用带有线性热启动的余弦退火衰减方法优化学习率,以避免模型训练陷入局部极小值区域,提升训练质量。为直观描述改进1DCNN模型对煤岩截割振动数据的特征提取过程和分类能力,采用t-分布随机近邻嵌入(t-SNE)流形学习算法对模型的特征学习过程进行可视化分析,结果表明,改进1DCNN模型通过逐层特征学习,很好地实现了对煤岩截割状态的识别。以陕西某矿MG650/1590-WD型采煤机截割煤岩时的实测振动数据为样本进行模型训练,结果表明,改进1DCNN模型在训练集上的准确率为99.91%,在测试集上的准确率为99.32%,可直接用于采煤机截割煤岩时的原始振动信号分类,并能够有效识别煤岩截割状态。与传统机器学习、集成学习及未改进的1DCNN模型相比,改进1DCNN模型具有明显优势,平均识别准确率达99.56%,同时大大节约了计算成本,提高了模型识别速度。 展开更多
关键词 煤岩识别 卷积神经网络 1dcnn 振动信号 余弦退火 t-分布随机近邻嵌入
在线阅读 下载PDF
基于视觉的工人高处攀爬不安全行为识别模型
15
作者 张泽辉 张乾隆 +3 位作者 徐晓滨 赵祖国 王海泉 李昊 《中国安全科学学报》 北大核心 2025年第2期144-151,共8页
为精准识别高处作业人员攀爬过程中出现的不安全行为,提出一种基于视觉的工人高处攀爬不安全行为识别模型,由人体姿态估计算法和一维卷积不安全行为识别算法组成。人体姿态估计研究者采用量子化自编码器对人体关键点进行结构化建模,实... 为精准识别高处作业人员攀爬过程中出现的不安全行为,提出一种基于视觉的工人高处攀爬不安全行为识别模型,由人体姿态估计算法和一维卷积不安全行为识别算法组成。人体姿态估计研究者采用量子化自编码器对人体关键点进行结构化建模,实现人体关键点坐标的检测;结合高处作业安全行为知识,基于一维卷积神经网络(1DCNN)模型构建高处攀爬不安全行为识别算法,并通过实验进行验证。结果表明:该模型在人员无遮挡情况和有部分遮挡情况下,分别达到93.91%和90.34%的精度;与支持向量机(SVM)、K最邻近算法(KNN)相比,该模型具有更强的泛化能力。 展开更多
关键词 计算机视觉 工人高处攀爬 不安全行为 识别模型 一维卷积神经网络(1dcnn) 人体姿态估计
在线阅读 下载PDF
基于全透射近红外光谱的空心西瓜在线检测方法研究
16
作者 李佳琪 田喜 +2 位作者 王庆艳 何鑫 黄文倩 《光谱学与光谱分析》 北大核心 2025年第5期1440-1447,共8页
西瓜具有很高营养价值,医学上具有解暑的功效。成熟度、甜度和是否空心是西瓜评价的关键指标,成为市场竞争力的重要因素,西瓜空心的筛选保证西瓜更高品质,提高市场竞争力。通过实验室自主研发的全透射近红外光谱设备采集307个西瓜光谱... 西瓜具有很高营养价值,医学上具有解暑的功效。成熟度、甜度和是否空心是西瓜评价的关键指标,成为市场竞争力的重要因素,西瓜空心的筛选保证西瓜更高品质,提高市场竞争力。通过实验室自主研发的全透射近红外光谱设备采集307个西瓜光谱。根据西瓜空心位置主要发生在瓜体中心的特点,创新性提出对光谱进行区域分割和权重处理。通过支持向量机(SVM)和偏最小二乘判别分析(PLSDA)算法分别挑选出最优的两种权重光谱,基于原始光谱、权重光谱以及进行多元散射矫正(MSC)和卷积平滑(SGS)预处理后的光谱,3种光谱采用SVM和PLSDA分别进行空心西瓜分类建模。结果显示,相比原始光谱建立的模型,通过预处理并不一定会加强模型效果,甚至会降低模型效果,通过两种权重光谱建立模型效果最好,准确率分别为96.74%(SVM)和92.39%(PLSDA),权重处理后的光谱相比原始光谱和其他两种预处理后的光谱具有更好的建模效果。采用SVM和PLSDA两种算法挑选出的权重光谱和原始光谱分别进行一维卷积神经网络(1D-CNN)建立分类模型,模型准确率分别为98.92%(SVM),96.77%(PLSDA)和95.70%(原始光谱)。结果表明,1D-CNN建模效果相比SVM和PLSDA建模效果更好,并且光谱分割和权重处理后的光谱在1D-CNN中仍然适用,效果相比原始光谱更好,此研究为空心西瓜无损在线分级检测提供了重要的技术支撑。 展开更多
关键词 全透射近红外光谱 空心西瓜 权重光谱 一维卷积神经网络(1D-CNN)
在线阅读 下载PDF
基于SAE-SA-1D-CNN-BGRU的涡扇发动机剩余寿命预测 被引量:1
17
作者 聂磊 蔡文涛 +3 位作者 张吕凡 徐诗奕 吴柔慧 任一竹 《航空发动机》 北大核心 2023年第4期134-139,共6页
为解决涡扇发动机监测数据维度高和寿命预测准确度低的问题,提出一种基于深度学习的寿命预测方法,开展了利用神经网络获取涡扇发动机剩余寿命的研究。利用堆叠自编码(SAE)网络从高维传感器数据中提取健康因子(HI),采用1维卷积神经网络-... 为解决涡扇发动机监测数据维度高和寿命预测准确度低的问题,提出一种基于深度学习的寿命预测方法,开展了利用神经网络获取涡扇发动机剩余寿命的研究。利用堆叠自编码(SAE)网络从高维传感器数据中提取健康因子(HI),采用1维卷积神经网络-双向门控循环单元(1D-CNN-BGRU)方法捕捉HI序列中的空间和时间特征,并引入自注意(SA)机制对捕捉的特征分配权重,使用全连接层输出涡扇发动机剩余使用寿命(RUL),以此构建复合神经网络进行面向涡扇发动机高维数据的寿命预测。结果表明:利用NASA官方网站提供的涡扇发动机寿命试验公开数据集C-MAPSS对该方法进行验证,取得了均方根误差16.22和评分函数225的结果。证明了基于SAE-SA-1D-CNN-BGRU的寿命预测方法可实现涡扇发动机寿命的有效预测,能为涡扇发动机维修保障及健康管理提供有效决策支撑。 展开更多
关键词 剩余使用寿命 堆叠自编码网络 1卷积神经网络 双向门控循环单元 涡扇发动机 智能运 深度学习
在线阅读 下载PDF
基于残差连接和1D-CNN的滚动轴承故障诊断研究 被引量:43
18
作者 赵敬娇 赵志宏 杨绍普 《振动与冲击》 EI CSCD 北大核心 2021年第10期1-6,共6页
针对滚动轴承故障诊断人工提取特征困难、浅层诊断模型性能差的问题,提出一种基于残差连接的一维卷积神经网络(1D-CNN)的深层轴承故障诊断模型。将原始轴承振动信号输入网络中,利用具有残差连接的多个一维卷积层自动提取特征,残差连接... 针对滚动轴承故障诊断人工提取特征困难、浅层诊断模型性能差的问题,提出一种基于残差连接的一维卷积神经网络(1D-CNN)的深层轴承故障诊断模型。将原始轴承振动信号输入网络中,利用具有残差连接的多个一维卷积层自动提取特征,残差连接能够在提取深层特征信息的同时将浅层提取的特征信息保留下来,与无残差连接的一维卷积网络相比能获得更丰富的轴承信号特征信息,并输入到Softmax层进行分类,输出轴承振动信号的故障类型。该研究通过不同残差网络结构模型的设计,验证具有残差连接的1D-CNN的网络模型在轴承故障诊断的有效性。试验结果表明,残差连接能有效提高轴承故障诊断的准确率。 展开更多
关键词 一维卷积神经网络(1D-CNN) 残差连接 轴承故障诊断
在线阅读 下载PDF
基于mini-1D-CNN模型的TE过程故障诊断 被引量:2
19
作者 杨余 杨鑫 +2 位作者 王英 翟持 张浩 《中国安全科学学报》 CAS CSCD 北大核心 2023年第2期173-178,共6页
为提升石化企业过程监测与故障诊断系统性能,满足化工过程故障诊断实时性、时效性的要求,提出一种基于过程历史数据驱动的最小一维卷积神经网络(mini-1D-CNN)的故障诊断模型。首先,通过一维卷积核学习和识别不同故障类型的数据特征,自... 为提升石化企业过程监测与故障诊断系统性能,满足化工过程故障诊断实时性、时效性的要求,提出一种基于过程历史数据驱动的最小一维卷积神经网络(mini-1D-CNN)的故障诊断模型。首先,通过一维卷积核学习和识别不同故障类型的数据特征,自动提取优势特征并进行故障分类;其次,通过逐步向后回归选择重要特征参数,优化模型结构。利用可实时获取的31个过程变量与操作参数,输入一维卷积神经网络(1D-CNN),监测与诊断田纳西-伊斯曼(TE)过程的主要故障。结果表明:相对于其他故障诊断模型,mini-1D-CNN模型在测试集上故障诊断率(FDR)较高,可达到96.50%;同时,mini-1D-CNN模型关注于TE过程故障诊断的重要特征参数,在降低参数量及降低训练和测试时间上具有显著优势。 展开更多
关键词 最小一维卷积神经网络(mini-1D-CNN) 田纳西-伊斯曼(TE)过程 故障诊断 过程监测 贡献系数
在线阅读 下载PDF
基于1D-CNN的弹链运动加速度分类与识别
20
作者 仇坤 戴劲松 +1 位作者 王茂森 石树平 《兵工自动化》 2023年第2期52-58,共7页
针对人工判读研究弹链运动规律时存在过程复杂、效果不佳的问题,结合弹链运动加速度的1维特性,提出一种基于1D-CNN的弹链运动加速度分类与识别方法。基于Keras深度学习框架搭建1维卷积神经网络模型(1D convolutional neural network,1D-... 针对人工判读研究弹链运动规律时存在过程复杂、效果不佳的问题,结合弹链运动加速度的1维特性,提出一种基于1D-CNN的弹链运动加速度分类与识别方法。基于Keras深度学习框架搭建1维卷积神经网络模型(1D convolutional neural network,1D-CNN),对小口径自动炮射击试验中获取的弹链运动加速度信号进行数据预处理并制作训练集和测试集,利用训练集和测试集对1D-CNN模型进行训练和测试。结果表明:利用1D-CNN模型可实现弹链运动加速度信号的分类和识别,准确率在84%左右,达到了预期效果。 展开更多
关键词 1卷积神经网络 1加速度时间序列 数据预处理 数据分类与识别
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部