为有效解决多维时间序列(multivariate time series, MTS)无监督异常检测模型中自编码器模块容易拟合异常样本、正常MTS样本对应的隐空间特征可能被重构为异常MTS的问题,设计一种具有三重生成对抗的MTS异常检测模型。以LSTM自编码器为...为有效解决多维时间序列(multivariate time series, MTS)无监督异常检测模型中自编码器模块容易拟合异常样本、正常MTS样本对应的隐空间特征可能被重构为异常MTS的问题,设计一种具有三重生成对抗的MTS异常检测模型。以LSTM自编码器为生成器,基于重构误差生成伪标签,由判别器区分经伪标签过滤后的重构MTS和原始MTS;采用两次对抗训练将LSTM自编码器的隐空间约束为均匀分布,减少LSTM自编码器隐空间特征重构出异常MTS的可能性。多个公开MTS数据集上的实验结果表明,T-GAN能在带有污染数据的训练集上更好学习正常MTS分布,取得较高的异常检测效果。展开更多
文摘为有效解决多维时间序列(multivariate time series, MTS)无监督异常检测模型中自编码器模块容易拟合异常样本、正常MTS样本对应的隐空间特征可能被重构为异常MTS的问题,设计一种具有三重生成对抗的MTS异常检测模型。以LSTM自编码器为生成器,基于重构误差生成伪标签,由判别器区分经伪标签过滤后的重构MTS和原始MTS;采用两次对抗训练将LSTM自编码器的隐空间约束为均匀分布,减少LSTM自编码器隐空间特征重构出异常MTS的可能性。多个公开MTS数据集上的实验结果表明,T-GAN能在带有污染数据的训练集上更好学习正常MTS分布,取得较高的异常检测效果。