针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首...针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首先,提出基于各项出现位置与项重复关系数组的CSP(Calculation Support of Pattern)算法计算模式支持度,从而实现模式平均效用的快速计算;其次,采用项集扩展和序列扩展生成候选模式,并提出了最大平均效用上界,基于该上界实现对候选模式的有效剪枝。在5个真实数据集和1个合成数据集上的实验结果表明,相较于TOUP-dfs和HAOP-ms算法,TOUP算法的候选模式数分别降低了38.5%~99.8%和0.9%~77.6%;运行时间分别降低了33.6%~97.1%和57.9%~97.2%。TOUP的算法性能更优,能更高效地挖掘用户感兴趣的模式。展开更多
具有间隙约束和一次性条件的最大模式匹配(Maximum Pattern Matching with Gaps and One-Off Condition,MPMGOOC)是一种具有通配符长度约束的模式匹配问题,其任务是寻找彼此互不相关的最多出现.文中基于一种新的非线性数据结构——网树...具有间隙约束和一次性条件的最大模式匹配(Maximum Pattern Matching with Gaps and One-Off Condition,MPMGOOC)是一种具有通配符长度约束的模式匹配问题,其任务是寻找彼此互不相关的最多出现.文中基于一种新的非线性数据结构——网树,提出了一种解决MPMGOOC问题的启发式算法.与树结构不同之处在于,除根结点外,网树中任何结点可以多于1个双亲结点.文中给出了网树的定义及其相关的概念和性质.基于这些概念和性质,提出了一种选择较优出现(Selecting Better Occurrence,SBO)的启发式算法.该算法在搜索一个出现的循环中,采用了贪婪搜索双亲策略(Strategy of Greedy-Search Parent,SGSP)和最右双亲策略(Strategy of RightMostParent,SRMP)寻找相同叶子的两个出现并选择其中较好的出现作为SBO算法的结果.SGSP策略的核心思想是每一步都寻找当前结点的一个近似最优双亲(Approximately Optimimal Parent,AOP);SRMP策略的核心思想是每一步都寻找当前结点的最右双亲结点.实验结果表明,在多数情况下SBO算法可以获得更好的解且解的质量较其它算法有显著的提高.文中不但提供了一个解决MPMGOOC问题的启发式算法,更重要的是对于求解其它复杂问题具有一定的参考价值.展开更多
文摘针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首先,提出基于各项出现位置与项重复关系数组的CSP(Calculation Support of Pattern)算法计算模式支持度,从而实现模式平均效用的快速计算;其次,采用项集扩展和序列扩展生成候选模式,并提出了最大平均效用上界,基于该上界实现对候选模式的有效剪枝。在5个真实数据集和1个合成数据集上的实验结果表明,相较于TOUP-dfs和HAOP-ms算法,TOUP算法的候选模式数分别降低了38.5%~99.8%和0.9%~77.6%;运行时间分别降低了33.6%~97.1%和57.9%~97.2%。TOUP的算法性能更优,能更高效地挖掘用户感兴趣的模式。
文摘具有间隙约束和一次性条件的最大模式匹配(Maximum Pattern Matching with Gaps and One-Off Condition,MPMGOOC)是一种具有通配符长度约束的模式匹配问题,其任务是寻找彼此互不相关的最多出现.文中基于一种新的非线性数据结构——网树,提出了一种解决MPMGOOC问题的启发式算法.与树结构不同之处在于,除根结点外,网树中任何结点可以多于1个双亲结点.文中给出了网树的定义及其相关的概念和性质.基于这些概念和性质,提出了一种选择较优出现(Selecting Better Occurrence,SBO)的启发式算法.该算法在搜索一个出现的循环中,采用了贪婪搜索双亲策略(Strategy of Greedy-Search Parent,SGSP)和最右双亲策略(Strategy of RightMostParent,SRMP)寻找相同叶子的两个出现并选择其中较好的出现作为SBO算法的结果.SGSP策略的核心思想是每一步都寻找当前结点的一个近似最优双亲(Approximately Optimimal Parent,AOP);SRMP策略的核心思想是每一步都寻找当前结点的最右双亲结点.实验结果表明,在多数情况下SBO算法可以获得更好的解且解的质量较其它算法有显著的提高.文中不但提供了一个解决MPMGOOC问题的启发式算法,更重要的是对于求解其它复杂问题具有一定的参考价值.