In this paper,we introduce the real pairwise completely positive(RPCP)matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative,which has a real pairwise c...In this paper,we introduce the real pairwise completely positive(RPCP)matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative,which has a real pairwise completely positive(RPCP)decomposition.We study the properties of RPCP matrices and give some necessary and sufficient conditions for a matrix pair to be RPCP.First,we give an equivalent decomposition for the RPCP matrices,which is different from the RPCP-decomposition and show that the matrix pair(X,X)is RPCP if and only if X is completely positive.Besides,we also prove that the RPCP matrices checking problem is equivalent to the separable completion problem.A semidefinite algorithm is also proposed for detecting whether or not a matrix pair is RPCP.The asymptotic and finite convergence of the algorithm are also discussed.If it is RPCP,we can further give a RPCP-decomposition for it;if it is not,we can obtain a certificate for this.展开更多
To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location al...To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location allocation method for the delivery sites to deliver daily necessities during epidemic quarantines.After establishing the optimization objectives and constraints,we developed a relevant mathematical model based on the collected data and utilized traditional intelligent optimization algorithms to obtain Pareto optimal solutions.Building on the characteristics of these Pareto front solutions,we introduced an improved clustering algorithm and conducted simulation experiments using data from Changchun City.The results demonstrate that the proposed algorithm outperforms traditional intelligent optimization algorithms in terms of effectiveness,efficiency,and stability,achieving reductions of approximately 12%and 8%in time and labor costs,respectively,compared to the baseline algorithm.展开更多
A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction...A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction to the EPIC effective area.To quantify the bias caused by the calibration issue in the joint analysis of XMM-NuSTAR spectra and verify the effectiveness of the correction,in this work,we perform joint-fitting of the NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright active galactic nuclei(AGN).The spectra were extracted after requiring perfect simultaneity between the XMM-Newton and NuSTAR exposures(merging good time intervals(GTIs)from two missions)to avoid bias due to the rapid spectral variability of the AGN.Before the correction,the EPIC-pn spectra are systematically harder than the corresponding NuSTAR spectra by■subsequently yielding significantly underestimated cutoff energy E_(cut)and the strength of reflection component R when performing joint-fitting.We confirm that the correction is highly effective and can commendably erase the discrepancy in best-fitΓ,E_(cut),and R.We thus urge the community to apply the correction when joint-fitting XMM-NuSTAR spectra,but note that the correction is limited to 3–12 keV and therefore not applicable when the soft X-ray band data are included.Besides,we show that as merging GTIs from two missions would cause severe loss of NuSTAR net exposure time,in many cases,joint-fitting yields no advantage compared with utilizing NuSTAR data alone.Finally,We present a technical note on filtering periods of high background flares for XMM-Newton EPIC-pn exposures in the small window(SW)mode.展开更多
A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical prope...A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects.展开更多
The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job ther...The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines.展开更多
This paper reviews the current status of investigation on snow accumulation on the bogies of high-speed trains(HSTs) running in snowy region. First, the background of the snow issue occurring to the HST and the contra...This paper reviews the current status of investigation on snow accumulation on the bogies of high-speed trains(HSTs) running in snowy region. First, the background of the snow issue occurring to the HST and the contra-measures for the snow issue proposed in the past decades are provided by reviewing previous studies. Next, the methodology for investigating the snow issue developed by High-Speed Train Research Center of Central South University is introduced, including the numerical simulation research platform and the experimental devices for two-phase flow wind tunnel tests. Then, effective anti-snow flow control schemes for guiding the underbody airflow and their impact on the motion and accretion of snow in the installation region of the bogies are presented. Finally, the remaining investigating challenge for the snow issue of HST and the future research with respect to the challenge are provided from an engineering application viewpoint.展开更多
Metro passenger flow control problem is studied under given total inbound demand in this work,which considers passenger demand control and train capacity supply.Relevant connotations are analyzed and a mathematical mo...Metro passenger flow control problem is studied under given total inbound demand in this work,which considers passenger demand control and train capacity supply.Relevant connotations are analyzed and a mathematical model is developed.The decision variables are boarding limiting and stop-skipping strategies and the objective is the maximal passenger profit.And a passenger original station choice model based on utility theory is built to modify the inbound passenger distribution among stations.Algorithm of metro passenger flow control scheme is designed,where two key technologies of stopping-station choice and headway adjustment are given and boarding limiting and train stopping-station scheme are optimized.Finally,a real case of Beijing metro is taken for example to verify validity.The results show that in the three scenarios with different ratios of normal trains to stop-skipping trains,the total limited passenger volume is the smallest and the systematic profit is the largest in scenario 3.展开更多
文摘In this paper,we introduce the real pairwise completely positive(RPCP)matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative,which has a real pairwise completely positive(RPCP)decomposition.We study the properties of RPCP matrices and give some necessary and sufficient conditions for a matrix pair to be RPCP.First,we give an equivalent decomposition for the RPCP matrices,which is different from the RPCP-decomposition and show that the matrix pair(X,X)is RPCP if and only if X is completely positive.Besides,we also prove that the RPCP matrices checking problem is equivalent to the separable completion problem.A semidefinite algorithm is also proposed for detecting whether or not a matrix pair is RPCP.The asymptotic and finite convergence of the algorithm are also discussed.If it is RPCP,we can further give a RPCP-decomposition for it;if it is not,we can obtain a certificate for this.
基金National Natural Science Foundation of China(62202477)。
文摘To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location allocation method for the delivery sites to deliver daily necessities during epidemic quarantines.After establishing the optimization objectives and constraints,we developed a relevant mathematical model based on the collected data and utilized traditional intelligent optimization algorithms to obtain Pareto optimal solutions.Building on the characteristics of these Pareto front solutions,we introduced an improved clustering algorithm and conducted simulation experiments using data from Changchun City.The results demonstrate that the proposed algorithm outperforms traditional intelligent optimization algorithms in terms of effectiveness,efficiency,and stability,achieving reductions of approximately 12%and 8%in time and labor costs,respectively,compared to the baseline algorithm.
基金supported by the National Natural Science Foundation of China(12033006,12192221,123B2042).
文摘A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction to the EPIC effective area.To quantify the bias caused by the calibration issue in the joint analysis of XMM-NuSTAR spectra and verify the effectiveness of the correction,in this work,we perform joint-fitting of the NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright active galactic nuclei(AGN).The spectra were extracted after requiring perfect simultaneity between the XMM-Newton and NuSTAR exposures(merging good time intervals(GTIs)from two missions)to avoid bias due to the rapid spectral variability of the AGN.Before the correction,the EPIC-pn spectra are systematically harder than the corresponding NuSTAR spectra by■subsequently yielding significantly underestimated cutoff energy E_(cut)and the strength of reflection component R when performing joint-fitting.We confirm that the correction is highly effective and can commendably erase the discrepancy in best-fitΓ,E_(cut),and R.We thus urge the community to apply the correction when joint-fitting XMM-NuSTAR spectra,but note that the correction is limited to 3–12 keV and therefore not applicable when the soft X-ray band data are included.Besides,we show that as merging GTIs from two missions would cause severe loss of NuSTAR net exposure time,in many cases,joint-fitting yields no advantage compared with utilizing NuSTAR data alone.Finally,We present a technical note on filtering periods of high background flares for XMM-Newton EPIC-pn exposures in the small window(SW)mode.
基金Project(41672290)supported by the National Natural Science Foundation of ChinaProject(2016J01189)supported by the Natural Science foundation of Fujian Province,China
文摘A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects.
文摘The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines.
基金Project(2016YFB1200404)supported by the National Key Research and Development Program of ChinaProjects(51605044,U1534210)supported by the National Science Foundation of China。
文摘This paper reviews the current status of investigation on snow accumulation on the bogies of high-speed trains(HSTs) running in snowy region. First, the background of the snow issue occurring to the HST and the contra-measures for the snow issue proposed in the past decades are provided by reviewing previous studies. Next, the methodology for investigating the snow issue developed by High-Speed Train Research Center of Central South University is introduced, including the numerical simulation research platform and the experimental devices for two-phase flow wind tunnel tests. Then, effective anti-snow flow control schemes for guiding the underbody airflow and their impact on the motion and accretion of snow in the installation region of the bogies are presented. Finally, the remaining investigating challenge for the snow issue of HST and the future research with respect to the challenge are provided from an engineering application viewpoint.
基金Projects(RCS2015ZZ002,RCS2014ZT25)supported by State Key Laboratory of Rail Traffic Control&Safety,ChinaProject(2015RC058)supported by Beijing Jiaotong University,China
文摘Metro passenger flow control problem is studied under given total inbound demand in this work,which considers passenger demand control and train capacity supply.Relevant connotations are analyzed and a mathematical model is developed.The decision variables are boarding limiting and stop-skipping strategies and the objective is the maximal passenger profit.And a passenger original station choice model based on utility theory is built to modify the inbound passenger distribution among stations.Algorithm of metro passenger flow control scheme is designed,where two key technologies of stopping-station choice and headway adjustment are given and boarding limiting and train stopping-station scheme are optimized.Finally,a real case of Beijing metro is taken for example to verify validity.The results show that in the three scenarios with different ratios of normal trains to stop-skipping trains,the total limited passenger volume is the smallest and the systematic profit is the largest in scenario 3.