随着高速铁路的快速发展,其节能减碳问题倍受关注。将绿色电能用于牵引供电是有效的节能降耗手段,若将高速铁路的大量再生制动能量合理利用,由废电转为绿电,亦可推进牵引供电用能的清洁能源化。针对光伏接入牵引供电系统条件下高速铁路...随着高速铁路的快速发展,其节能减碳问题倍受关注。将绿色电能用于牵引供电是有效的节能降耗手段,若将高速铁路的大量再生制动能量合理利用,由废电转为绿电,亦可推进牵引供电用能的清洁能源化。针对光伏接入牵引供电系统条件下高速铁路长大坡道地面式再生制动能量混合储能系统容量优化配置问题,在分析高速铁路长大坡道绿电资源获取方式、光伏出力和制动能量特性的基础上,考虑绿电牵引场景下长大坡道混合储能系统不同时间维度下功率特性及各运行工况能量特性,给出基于储能需求密度的混合储能系统再生制动与光伏闲时能量并行回收的分段配置方案;针对不同储能介质的特性分别建立优化模型,利用基于Levy飞行的改进模拟退火算法(simulated annealing algorithm based on Levy flight,LESA)进行优化求解;最后,选取西成高铁某牵引变电所实测数据进行算例分析。结果表明,所提优化配置策略能够在同时考虑光伏出力与再生制动能量线内外绿电的情况下,实现对高铁长大坡道混合储能系统容量的优化配置,有效提高牵引供电系统绿电占比,缩短储能系统成本回收年限,可为高速铁路储能系统工程化应用提供参考,促进轨道交通牵引用能绿色低碳化发展。展开更多
文摘随着高速铁路的快速发展,其节能减碳问题倍受关注。将绿色电能用于牵引供电是有效的节能降耗手段,若将高速铁路的大量再生制动能量合理利用,由废电转为绿电,亦可推进牵引供电用能的清洁能源化。针对光伏接入牵引供电系统条件下高速铁路长大坡道地面式再生制动能量混合储能系统容量优化配置问题,在分析高速铁路长大坡道绿电资源获取方式、光伏出力和制动能量特性的基础上,考虑绿电牵引场景下长大坡道混合储能系统不同时间维度下功率特性及各运行工况能量特性,给出基于储能需求密度的混合储能系统再生制动与光伏闲时能量并行回收的分段配置方案;针对不同储能介质的特性分别建立优化模型,利用基于Levy飞行的改进模拟退火算法(simulated annealing algorithm based on Levy flight,LESA)进行优化求解;最后,选取西成高铁某牵引变电所实测数据进行算例分析。结果表明,所提优化配置策略能够在同时考虑光伏出力与再生制动能量线内外绿电的情况下,实现对高铁长大坡道混合储能系统容量的优化配置,有效提高牵引供电系统绿电占比,缩短储能系统成本回收年限,可为高速铁路储能系统工程化应用提供参考,促进轨道交通牵引用能绿色低碳化发展。