Giant reed is a suitable pioneer plant for metal-contaminated soil phytoremediation,however,it is imperative to dispose the metal-contaminated biomass after harvesting.The liquefaction of metal-contaminated giant reed...Giant reed is a suitable pioneer plant for metal-contaminated soil phytoremediation,however,it is imperative to dispose the metal-contaminated biomass after harvesting.The liquefaction of metal-contaminated giant reed biomass in ethylene glycol system with sulfuric acid as catalyst for the precursors of polyurethane compounds was studied.The results show that giant reed biomass from metal-contaminated soil is potentially liquefied and significantly affected by solvent/solid ratio,liquefaction temperature and liquefaction time (P〈0.05).The liquefaction rate of biomass in acidified ethylene glycol system can reach 85.2% with optimized conditions of 60 min,170 ℃,3% sulfuric acid and solvent/biomass ratio of 5:1.The hydroxyl value of liquefied products is of 481 mg KOH/g while reactive hydroxyl groups of them are abundant,which is promised as potential precursors for polyurethane compounds.The solvent liquefaction is a potential method to dispose the metal-contaminated biomass,however,the containing-metal liquefied products should be studied deeply in order to get the suitable precursors in future.展开更多
Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal tem...Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal temperature and humidity, heating from solar radiation in summer at normal temperature and high humidity after rain, humidifying from brash in summer at high temperature and normal humidity. The results show that, in summer, the largest temperature difference between external and internal surface of the 28 mm-thick bamboo plywood wall is 11.73℃ (at 15:40) and the largest strain difference is 136 μm/m (at 18:50), both in ambient and indoor conditioned environment. In heating process, lengthways of the wall surface are in contracting strain while transverse ways are in expanding strain at initial stage and in contracting strain during later period. When the high temperature wall is humidified by rain, the surface temperature drops, moisture content increases and the expanding strain is presented on the surface during the whole process. Temperature and moisture content are two important factors which affect thermal and moisture stress (TMS) of the bamboo structure wall. The TMS is not only related to temperature and moisture content, but also greatly affected by temperature gradient, moisture content gradient and rates of changing.展开更多
The volatile oil of leaves and barks of Calycopteris floribunda was examined by gas chromatography-mass spectrometry (GC-MS). 52 volatile chemical components in leaves were identified. The antimicrobial assay of oils ...The volatile oil of leaves and barks of Calycopteris floribunda was examined by gas chromatography-mass spectrometry (GC-MS). 52 volatile chemical components in leaves were identified. The antimicrobial assay of oils in the leaves and barks was carried out by disk diffusion method in vitro. The major components (mass fraction) in leaves are caryophyllene oxide (13.79%),n-hexadecanoic acid (11.91%) and β-caryophyllene (10.45%). Ten constituents are identified accounting for about 99.98% of the total volatile oil in the bark. Among these components,n-hexadecanoic acid (59.18%),linolic acid (12.70%) and butyl octyl phthalate (8.21%) are the major constituents. The oils exhibit strong antimicrobial activity and display more potent against bacteria than fungi.展开更多
基金Project(41271330)supported by the National Natural Science Foundation of ChinaProject(2012BAC09B04)supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of ChinaProject(2012FJ1010)supported by the Science and Technology Major Program of Hunan Province,China
文摘Giant reed is a suitable pioneer plant for metal-contaminated soil phytoremediation,however,it is imperative to dispose the metal-contaminated biomass after harvesting.The liquefaction of metal-contaminated giant reed biomass in ethylene glycol system with sulfuric acid as catalyst for the precursors of polyurethane compounds was studied.The results show that giant reed biomass from metal-contaminated soil is potentially liquefied and significantly affected by solvent/solid ratio,liquefaction temperature and liquefaction time (P〈0.05).The liquefaction rate of biomass in acidified ethylene glycol system can reach 85.2% with optimized conditions of 60 min,170 ℃,3% sulfuric acid and solvent/biomass ratio of 5:1.The hydroxyl value of liquefied products is of 481 mg KOH/g while reactive hydroxyl groups of them are abundant,which is promised as potential precursors for polyurethane compounds.The solvent liquefaction is a potential method to dispose the metal-contaminated biomass,however,the containing-metal liquefied products should be studied deeply in order to get the suitable precursors in future.
基金Project(50878078) supported by the National Natural Science Foundation of China
文摘Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal temperature and humidity, heating from solar radiation in summer at normal temperature and high humidity after rain, humidifying from brash in summer at high temperature and normal humidity. The results show that, in summer, the largest temperature difference between external and internal surface of the 28 mm-thick bamboo plywood wall is 11.73℃ (at 15:40) and the largest strain difference is 136 μm/m (at 18:50), both in ambient and indoor conditioned environment. In heating process, lengthways of the wall surface are in contracting strain while transverse ways are in expanding strain at initial stage and in contracting strain during later period. When the high temperature wall is humidified by rain, the surface temperature drops, moisture content increases and the expanding strain is presented on the surface during the whole process. Temperature and moisture content are two important factors which affect thermal and moisture stress (TMS) of the bamboo structure wall. The TMS is not only related to temperature and moisture content, but also greatly affected by temperature gradient, moisture content gradient and rates of changing.
基金Project(2007-1718) supported by Development and Reform Commission of Yunnan Province, China
文摘The volatile oil of leaves and barks of Calycopteris floribunda was examined by gas chromatography-mass spectrometry (GC-MS). 52 volatile chemical components in leaves were identified. The antimicrobial assay of oils in the leaves and barks was carried out by disk diffusion method in vitro. The major components (mass fraction) in leaves are caryophyllene oxide (13.79%),n-hexadecanoic acid (11.91%) and β-caryophyllene (10.45%). Ten constituents are identified accounting for about 99.98% of the total volatile oil in the bark. Among these components,n-hexadecanoic acid (59.18%),linolic acid (12.70%) and butyl octyl phthalate (8.21%) are the major constituents. The oils exhibit strong antimicrobial activity and display more potent against bacteria than fungi.