Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir...Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.展开更多
Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical e...Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters.展开更多
The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
As a typical solid waste from the iron and steel,the mechanical properties of steel slag are regarded as the core basis for realizing its resource recycling.To explore the influence of shape and external loading speed...As a typical solid waste from the iron and steel,the mechanical properties of steel slag are regarded as the core basis for realizing its resource recycling.To explore the influence of shape and external loading speed on the crushing characteristics of steel slag,single particle crushing tests were carried out.The research focuses on the correlation between parameters such as the load−displacement relationship of single particles,crushing mode,crushing energy,and Weibull modulus,as well as external loading rate and quantified morphological parameters.The results show that the single particle crushing modes of steel slag mainly consist of three modes:through-splitting,complete fragmentation and local cutting;Compared with natural aggregates or recycled materials,steel slag particles are found to potentially exhibit higher compressive strength and the increase in loading rate further accelerates the occurrence of particle crushing behavior;Significant impacts on the crushing mode and characteristic stress of steel slag particles are exerted by their shape differences,and the energy release mode is jointly regulated by shape and loading rate.This research provides theoretical guidance and technical support for the diversified utilization of steel slag single particles,a new type of solid waste resource.展开更多
The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied...The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied angle shear tests(VASTs)were designed using acoustic emission(AE)detection and digital image correlation technologies to evaluate the mechanical behaviors of typical red sandstone.AE signal parameters revealed differences in the number and intensity of microcracks within the sandstone,with a test angle(α)of 50°identified as a significant turning point for its failure properties.Whenα³50°,microcrack activity intensified,and the proportion of tensile cracks increased.Asαincreased,the number of fragments generated after failure decreased,fragment sizes became smaller,and the crack network simplified.Cracks extended from the two cut slits at the ends of the rock,gradually penetrating along the centerline towards the central location,as observed from the evolution of the strain concentration field.Both cohesion(c)and internal friction angle(ϕ)measured in VAST were lower than those measured under conventional triaxial compression.展开更多
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr...The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.展开更多
The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditi...The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditions.In this work,considering the different combinations of confining pressure and bedding plane inclination angle(α),biaxial mechanical loading experiments were conducted on shale containing circular holes.The research results indicate that the confining pressure and inclination angle of the bedding planes significantly influence the failure patterns of shale containing circular holes.The instability of shale containing circular holes can be classified into five types:tensile failure along the bedding planes,tensile failure through the bedding planes,shear slip along the bedding planes,shear failure through the bedding planes,and block instability failure.Furthermore,the evolution of strain and stress fields around the circular holes was found to be the fundamental cause of variations in the initiation characteristics and locations of shale cracks.The crack initiation criterion for shale containing circular hole was established,providing a new method for evaluating the trajectory of shale hole wall fractures.This study holds significant importance for evaluating the evolution and stability of fracture networks within shale reservoirs.展开更多
文摘Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.
文摘Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters.
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.
基金Project(52025085)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProjects(52208421,52408394)supported by the National Natural Science Foundation of China+2 种基金Project(2023JJ40050)supported by the Hunan Provincial Natural Science Foundation,ChinaProject(2024JJ1001)supported by the Science Fund for Creative Research Groups of Hunan Provincial Natural Science Foundation,ChinaProject(kfj210201)supported by the Open Fund of the Key Laboratory of Highway Engineering of Ministry of Education(Changsha University of Science&Technology),China。
文摘As a typical solid waste from the iron and steel,the mechanical properties of steel slag are regarded as the core basis for realizing its resource recycling.To explore the influence of shape and external loading speed on the crushing characteristics of steel slag,single particle crushing tests were carried out.The research focuses on the correlation between parameters such as the load−displacement relationship of single particles,crushing mode,crushing energy,and Weibull modulus,as well as external loading rate and quantified morphological parameters.The results show that the single particle crushing modes of steel slag mainly consist of three modes:through-splitting,complete fragmentation and local cutting;Compared with natural aggregates or recycled materials,steel slag particles are found to potentially exhibit higher compressive strength and the increase in loading rate further accelerates the occurrence of particle crushing behavior;Significant impacts on the crushing mode and characteristic stress of steel slag particles are exerted by their shape differences,and the energy release mode is jointly regulated by shape and loading rate.This research provides theoretical guidance and technical support for the diversified utilization of steel slag single particles,a new type of solid waste resource.
基金Project(52374150)supported by the National Natural Science Foundation of ChinaProject(2021RC3007)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied angle shear tests(VASTs)were designed using acoustic emission(AE)detection and digital image correlation technologies to evaluate the mechanical behaviors of typical red sandstone.AE signal parameters revealed differences in the number and intensity of microcracks within the sandstone,with a test angle(α)of 50°identified as a significant turning point for its failure properties.Whenα³50°,microcrack activity intensified,and the proportion of tensile cracks increased.Asαincreased,the number of fragments generated after failure decreased,fragment sizes became smaller,and the crack network simplified.Cracks extended from the two cut slits at the ends of the rock,gradually penetrating along the centerline towards the central location,as observed from the evolution of the strain concentration field.Both cohesion(c)and internal friction angle(ϕ)measured in VAST were lower than those measured under conventional triaxial compression.
基金Projects(51979268,52279117,52309146)supported by the National Natural Science Foundation of ChinaProject(SKLGME-JBGS2401)supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.
基金Projects(52104143,52109135,52374099)supported by the National Natural Science Foundation of ChinaProject(2025YFHZ0323)supported by the Natural Science Foundation of Sichuan Province,China。
文摘The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditions.In this work,considering the different combinations of confining pressure and bedding plane inclination angle(α),biaxial mechanical loading experiments were conducted on shale containing circular holes.The research results indicate that the confining pressure and inclination angle of the bedding planes significantly influence the failure patterns of shale containing circular holes.The instability of shale containing circular holes can be classified into five types:tensile failure along the bedding planes,tensile failure through the bedding planes,shear slip along the bedding planes,shear failure through the bedding planes,and block instability failure.Furthermore,the evolution of strain and stress fields around the circular holes was found to be the fundamental cause of variations in the initiation characteristics and locations of shale cracks.The crack initiation criterion for shale containing circular hole was established,providing a new method for evaluating the trajectory of shale hole wall fractures.This study holds significant importance for evaluating the evolution and stability of fracture networks within shale reservoirs.