期刊文献+
共找到115篇文章
< 1 2 6 >
每页显示 20 50 100
《目标》期刊学术论文翻译述评及模式研究 被引量:2
1
作者 文军 郭凯琳 +3 位作者 倪雅莉 杨笑语 张赛 张晓天 《外语教育研究》 2016年第1期35-40,共6页
本文以《目标》期刊5篇论文的翻译述评为例,具体阐述了学术论文翻译述评撰写的各种具体要素,并归纳了这类写作的基本模式,以期对翻译硕士培养提供借鉴。
关键词 学术论文 翻译述评 模式 《目标》
在线阅读 下载PDF
推广《目标》理念全面促进贵航集团管理新台阶——观看企管电影《目标》有感
2
作者 楚海涛 《中国军转民》 2009年第11期50-53,共4页
到2008年以前,连续29年经济的高速增长,这在人类历史上,是个耀眼的繁荣时代,是伟大的时代。但就是在这个时代,一个个行业从暴利走向微利,再走向企业亏损。航空工业虽然情况没有如此悲观,但行业竞争尤其是融入到世界航空产业链后... 到2008年以前,连续29年经济的高速增长,这在人类历史上,是个耀眼的繁荣时代,是伟大的时代。但就是在这个时代,一个个行业从暴利走向微利,再走向企业亏损。航空工业虽然情况没有如此悲观,但行业竞争尤其是融入到世界航空产业链后的竞争会日趋激烈、企业生存和盈利越发的艰难将是必然的趋势。 展开更多
关键词 《目标》 集团管理 电影 观看 台阶 行业竞争 航空工业 高速增长
在线阅读 下载PDF
Dense Small Target Image Detection Algorithm Based on the Improved YOLOv8
3
作者 MA Jing-yu SI Zhan-jun 《印刷与数字媒体技术研究》 北大核心 2025年第2期65-71,97,共8页
The YOLOv8 model faces challenges with dense target distribution and small size,resulting in lower accuracy in dense small target detection.To address these issues,an improved small target detection algorithm based on... The YOLOv8 model faces challenges with dense target distribution and small size,resulting in lower accuracy in dense small target detection.To address these issues,an improved small target detection algorithm based on the YOLOv8 model was proposed in this paper.Firstly,the Global Attention Module(GAM)was introduced to enhance data prediction capability and model expression ability.Secondly,the Space-to-Depth(SPD)module was incorporated into the backbone network for fine-grained feature information learning to mitigate feature information loss due to down-sampling.Finally,a 160 pixels×160 pixels feature layer was added to expand small target feature information and effectively reduce instances of missed targets.Experimental validation on the public VisDrone2019 UAV small target detaset demonstrated that the proposed model achieves significant performance improvement in small target detection tasks compared to existing models,exhibiting higher accuracy. 展开更多
关键词 YOLOv8 Small targets GAM SPD
在线阅读 下载PDF
Research on SAR Image Lightweight Detection Based on Improved YOLOV8
4
作者 WANG Qing SI Zhan-jun 《印刷与数字媒体技术研究》 北大核心 2025年第1期93-100,共8页
In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal... In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value. 展开更多
关键词 YOLOv8 Synthetic aperture radar image LIGHTWEIGHT Target detection
在线阅读 下载PDF
Infrared aircraft few-shot classification method based on cross-correlation network
5
作者 HUANG Zhen ZHANG Yong GONG Jin-Fu 《红外与毫米波学报》 北大核心 2025年第1期103-111,共9页
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This... In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method. 展开更多
关键词 infrared imaging aircraft classification few-shot learning parameter-free attention cross attention
在线阅读 下载PDF
Review on Multi-objective Dynamic Scheduling Methods for Flexible Job Shops and Application in Aviation Manufacturing
6
作者 MA Yajie JIANG Bin +3 位作者 GUAN Li CHEN Lijun HUANG Binda CHEN Zhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期1-24,共24页
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in... Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed. 展开更多
关键词 flexible job shop dynamic scheduling machine breakdown job insertion multi-objective optimization
在线阅读 下载PDF
目标的力量
7
作者 郭龙 《创新科技》 2011年第7期59-59,共1页
法兰克博士是美国哈佛大学心理学的著名教授,是心理学方面的权威,虽然他已年过七十,可看上去却依然年轻。
关键词 《目标的力量》 随笔 杂文 杂谈
在线阅读 下载PDF
目标与成功
8
作者 曹卫华 《成才之路》 2011年第29期I0014-I0014,共1页
世界潜能大师博恩·崔西曾经说过这样的话:“成功等于目标”。
关键词 《目标与成功》 随笔 杂文 杂谈
在线阅读 下载PDF
Research on fast detection method of infrared small targets under resourceconstrained conditions
9
作者 ZHANG Rui LIU Min LI Zheng 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期582-587,共6页
Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ... Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions. 展开更多
关键词 infrared UAV image fast small object detection low impedance loss function
在线阅读 下载PDF
Oriented Bounding Box Object Detection Model Based on Improved YOLOv8
10
作者 ZHAO Xin-kang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期67-75,114,共10页
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ... In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes. 展开更多
关键词 Remote sensing image Oriented bounding boxes object detection Small target detection YOLOv8
在线阅读 下载PDF
Research on the Mechanism of Multi-Sensor Fusion Configuration Based on the Optimal Principle of the Vehicle
11
作者 Zhao Binggen Zeng Dong +2 位作者 Lin Haoyu Qiu Xubo Hu Pijie 《汽车技术》 CSCD 北大核心 2024年第10期28-37,共10页
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th... In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies. 展开更多
关键词 Multi-sensor fusion Intelligent driving Multi-objective optimization Vehicle optimization
在线阅读 下载PDF
Traffic Sign Detection Model Based on Improved RT-DETR
12
作者 WANG Yong-kang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期97-106,178,共11页
The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due ... The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due to the variety of sign types,significant size differences and complex background information,an improved traffic sign detection model for RT-DETR was proposed in this study.Firstly,the HiLo attention mechanism was added to the Attention-based Intra-scale Feature Interaction,which further enhanced the feature extraction capability of the network and improved the detection efficiency on high-resolution images.Secondly,the CAFMFusion feature fusion mechanism was designed,which enabled the network to pay attention to the features in different regions in each channel.Based on this,the model could better capture the remote dependencies and neighborhood feature correlation,improving the feature fusion capability of the model.Finally,the MPDIoU was used as the loss function of the improved model to achieve faster convergence and more accurate regression results.The experimental results on the TT100k-2021 traffic sign dataset showed that the improved model achieves the performance with a precision value of 90.2%,recall value of 88.1%and mAP@0.5 value of 91.6%,which are 4.6%,5.8%,and 4.4%better than the original RT-DETR model respectively.The model effectively improves the problem of poor traffic sign detection and has greater practical value. 展开更多
关键词 Object detection Traffic signs RT-DETR CAFMFusion
在线阅读 下载PDF
Improved YOLOv8-Based Target Detection Algorithm for UAV Aerial Image
13
作者 JIANG Mao-xiang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期86-96,共11页
In response to the challenge of low detection accuracy and susceptibility to missed and false detections of small targets in unmanned aerial vehicles(UAVs)aerial images,an improved UAV image target detection algorithm... In response to the challenge of low detection accuracy and susceptibility to missed and false detections of small targets in unmanned aerial vehicles(UAVs)aerial images,an improved UAV image target detection algorithm based on YOLOv8 was proposed in this study.To begin with,the CoordAtt attention mechanism was employed to enhance the feature extraction capability of the backbone network,thereby reducing interference from backgrounds.Additionally,the BiFPN feature fusion network with an added small object detection layer was used to enhance the model's ability to perceive for small objects.Furthermore,a multi-level fusion module was designed and proposed to effectively integrate shallow and deep information.The use of an enhanced MPDIoU loss function further improved detection performance.The experimental results based on the publicly available VisDrone2019 dataset showed that the improved model outperformed the YOLOv8 baseline model,mAP@0.5 improved by 20%,and the improved method improved the detection accuracy of the model for small targets. 展开更多
关键词 UAV YOLOv8 Attentional mechanisms Multi-scale detection MPDIoU
在线阅读 下载PDF
Improved Small Target Detection Method for SAR Image Based on YOLOv7
14
作者 YANG Ke SI Zhan-jun +1 位作者 ZHANG Ying-xue SHI Jin-yu 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期53-62,共10页
In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an... In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection. 展开更多
关键词 Small target detection Synthetic aperture radar YOLOv7 DyHead module Switchable Around Convolution
在线阅读 下载PDF
YOLO‑v8 with Multidimensional Attention and Upsampling Fusion for Small Air Target Detection in Radar Images
15
作者 JIANG Zhenyu LI Xiaodong +3 位作者 DU Chen CHEN An HAN Yanqiang LI Jinjin 《Transactions of Nanjing University of Aeronautics and Astronautics》 CSCD 2024年第6期710-724,共15页
This study presents an innovative approach to improving the performance of YOLO-v8 model for small object detection in radar images.Initially,a local histogram equalization technique was applied to the original images... This study presents an innovative approach to improving the performance of YOLO-v8 model for small object detection in radar images.Initially,a local histogram equalization technique was applied to the original images,resulting in a notable enhancement in both contrast and detail representation.Subsequently,the YOLO-v8 backbone network was augmented by incorporating convolutional kernels based on a multidimensional attention mechanism and a parallel processing strategy,which facilitated more effective feature information fusion.At the model’s head,an upsampling layer was added,along with the fusion of outputs from the shallow network,and a detection head specifically tailored for small object detection,thereby further improving accuracy.Additionally,the loss function was modified to incorporate focal-intersection over union(IoU)in conjunction with scaled-IoU,which enhanced the model’s performance.A weighting strategy was also introduced,effectively improving detection accuracy for small targets.Experimental results demonstrate that the customized model outperforms traditional approaches across various evaluation metrics,including recall,precision,F1-score,and the receiver operating characteristic(ROC)curve,validating its efficacy and innovation in small object detection within radar imagery.The results indicate a substantial improvement in accuracy compared to conventional methods such as image segmentation and standard convolutional neural networks. 展开更多
关键词 YOLO radar images object detection machine learning
在线阅读 下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
16
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
在线阅读 下载PDF
MULTI-FIGHTER COORDINATED MULTI-TARGET ATTACK SYSTEM 被引量:7
17
作者 耿延洛 姜长生 李伟浩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第1期18-23,共6页
A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ... A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter. 展开更多
关键词 multi-target attack coordinated airfight decision missile attack area priority fire control
在线阅读 下载PDF
Targets Track Predicting of IR Image by CMAC 被引量:2
18
作者 史彩成 赵保军 +1 位作者 毛二可 何佩琨 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期263-265,共3页
The centroid and attitude of target must be predicted in target tracking of IR image for increasing capture probability. CMAC estimator can effectually resolve conflict between operational counts and predicting preci... The centroid and attitude of target must be predicted in target tracking of IR image for increasing capture probability. CMAC estimator can effectually resolve conflict between operational counts and predicting precision. CMAC estimator is trained with a linear model, then the centroid and attitude are predicted. It is trained once by actual error in each frame to reduce the estimate error. CMAC has excellent predicting precision and small operational counts, it adapts to real time processing for target tracking. The experimental results show that CMAC can accurately estimate the centroid and attitude of target. It adapts to change of model and has robustness. 展开更多
关键词 IR image CMAC target tracking
在线阅读 下载PDF
SAR Moving Target Detection and Imaging Based on WVH Transform 被引量:2
19
作者 董永强 陶然 +1 位作者 周思永 王越 《Journal of Beijing Institute of Technology》 EI CAS 1999年第1期95-101,共7页
Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the li... Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the line integral, the WVH transform was derived by combining the Wigner Ville distribution (WVD) and the Hough transform (HT) together. The new transform was then verified with computer by the simulated SAR echoes. Results and Conclusion The correctness and the validity of the WVH transform were proved by the computer simulation. Compared with the conventional WVD HT method, the new approach based on the WVHT can simplify the processing procedure, it can translate the chirp echoes of multi targets of SAR from the time domain into the parameter space directly, while suppressing the cross terms of WVD and estimating the motion coefficients for the final imaging. It is obvious that the WVH transform can be also used in other cases for the chirp signal detection. 展开更多
关键词 synthetic aperture radar(SAR) Wigner Ville Hough transform(WVHT) moving target imaging
在线阅读 下载PDF
Modeling of the Multi-Target Locating and Tracking in the Field Artillery System 被引量:1
20
作者 杨国胜 窦丽华 +1 位作者 陈杰 侯朝桢 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期14-18,共5页
A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ba... A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ball, an algorithm is put forward for multi sensor multi target data fusion and an optimal solution for state estimation is presented. The simulation results prove the algorithm works well for the multi stationary target locating and the multi moving target tracking under the condition of the sparse target environment. Therefore, this method can be directly applied to the field artillery C 3I system. 展开更多
关键词 field artillery system data fusion closed ball cluster single sensor multi target multi sensor multi target
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部