For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of t...For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.展开更多
The sodium expansion curves of semi-graphitic cathode measured with the improved Rapoport-Samoilenko apparatus. The and TiB2/C composite cathode with different TiB2 contents were mathematic model of the sodium expansi...The sodium expansion curves of semi-graphitic cathode measured with the improved Rapoport-Samoilenko apparatus. The and TiB2/C composite cathode with different TiB2 contents were mathematic model of the sodium expansion was deduced on the basis of the experimental results. The sodium expansion parameter (a) and penetration rate factor (Q), were introduced into the model The model was validated with the experimental sodium expansion curves self-measured and reported. The results show that the variation tendency of the sodium expansion parameter (a) and penetration rate factor (Q) is consistent with that of the experimental curves. The model is capable of not only conveniently judging the cathode quality, but also favorably establishing a unified standard of the resistance to sodium penetration of cathode.展开更多
Li2Fe0.9Mn0.1SiO4/C composites were synthesized by using X-ray diffractometry (XRD), scanning electron microscopy (SEM) glucose as carbon source. The samples were characterized by and electrochemical measurements....Li2Fe0.9Mn0.1SiO4/C composites were synthesized by using X-ray diffractometry (XRD), scanning electron microscopy (SEM) glucose as carbon source. The samples were characterized by and electrochemical measurements. All Li2Fe0.9Mn0.1SiO4/C composites are of the similar crystal structure. With increasing the carbon content in the range of 5%-20% (mass fraction), the diffraction peaks in XRD patterns broaden and the particle sizes and the tap density of samples decrease. The Li2Fe0.9Mn0.1SiO4/C composites with carbon content of 14.12% show excellent electrochemical performances with an initial discharge capacity of 154.7 mA.h/g at C/16 rate, and the capacity retention remains 92.2% after 30 cycles.展开更多
In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys w...In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were studied with an X-ray diffractometer (XRD) and a high resolution transmission electronic microscope (HRTEM). An investigation on the thermal stability of the as-spun alloys was carried out with a differential scanning calorimeter (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results demonstrate that the substitution of Co for Ni does not alter the major phase of Mg2Ni but results in the formation of secondary phase MgCo2. No amorphous phase is detected in the as-spun Co-free alloy,but a certain amount of amorphous phase is clearly found in the as-spun Co-containing alloys. The substitution of Co for Ni exerts a slight influence on the hydriding kinetics of the as-spun alloy. However,it dramatically enhances the dehydriding kinetics of the as-cast and spun alloys. As Co content (x) increases from 0 to 0.4,the hydrogen desorption capacity increases from 0.19% to 1.39% (mass fraction) in 20 min for the as-cast alloy,and from 0.89% to 2.18% (mass fraction) for the as-spun alloy (30 m/s).展开更多
A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear reg...A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear regression,contained four descriptors solely extracted from the molecular structure of compounds. The statistical results of the final model show that R2= 0.982 4 and S=0.869 8 (where R is the correlation coefficient and S is the standard deviation). To test its predictive ability,the model was further used to predict the 13C NMR spectra of the carbinol carbon atoms of other nine compounds which were not included in the developed model. The average relative errors are 0.94% and 1.70%,respectively,for the training set and the predictive set. The model is statistically significant and shows good stability for data variation as tested by the leave-one-out (LOO) cross-validation. The comparison with other approaches also reveals good performance of this method.展开更多
The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties o...The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η'(MgZn2)and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120℃, 24h + 180 ℃, 30 min + 120 ℃, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition.展开更多
A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous MgzNi-type Mg2Nil-xMnx (x=0, 0. 1, 0.2, 0.3, ...A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous MgzNi-type Mg2Nil-xMnx (x=0, 0. 1, 0.2, 0.3, 0.4) alloys were synthesized by the melt-spinning technique. The structures of the as-cast and spun alloys were studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results show that the as-spun Mn-free alloy holds a typical nanocrystalline structure, whereas the as-spun alloys containing Mn display a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni intensifies the glass forming ability of the Mg2Ni-type alloy. The hydrogen absorption and desorption capacities and kinetics of the alloys increase with increasing the spinning rate, for which the nanocrystalline and amorphous structure produced by the melt spinning is mainly responsible. The substitution of Mn for Ni evidently improves the hydrogen desorption performance. The hydrogen desorption capacities of the as-cast and spun alloys rise with the increase in the percentage of Mn substitution.展开更多
For the diagnosis of glaucoma,optical coherence tomography(OCT)is a noninvasive imaging technique for the assessment of retinal layers.To accurately segment intraretinal layers in an optic nerve head(ONH)region,we pro...For the diagnosis of glaucoma,optical coherence tomography(OCT)is a noninvasive imaging technique for the assessment of retinal layers.To accurately segment intraretinal layers in an optic nerve head(ONH)region,we proposed an automatic method for the segmentation of three intraretinal layers in eye OCT scans centered on ONH.The internal limiting membrane,inner segment and outer segment,Bruch’s membrane surfaces under vascular shadows,and interaction of multiple high-reflectivity regions in the OCT image can be accurately segmented through this method.Then,we constructed a novel spatial-gradient continuity constraint,termed spatial-gradient continuity constraint,for the correction of discontinuity between adjacent image segmentation results.In our experiment,we randomly selected 20 B-scans,each annotated three retinal layers by experts.Signed distance errors of?0.80μm obtained through this method are lower than those obtained through the state-of-art method(?1.43μm).Meanwhile,the segmentation results can be used as bases for the diagnosis of glaucoma.展开更多
Surface roughness of quartz particles was determined by measuring the specific surface area of particles.The wettability characteristics of particles were determined by measuring the flotation rate using a laboratory ...Surface roughness of quartz particles was determined by measuring the specific surface area of particles.The wettability characteristics of particles were determined by measuring the flotation rate using a laboratory flotation cell.Experimental results show that the rod mill product has higher roughness than the ball mill product.For the particles with larger surface roughness,the flotation kinetics constant is also higher.Finally,empirical relationships between surface roughness(r) and the flotation kinetics constant(k) of quartz particles as k=A+Br+Cr0.5lnr+D/lnr+E/r and k=A+Br are presented,in which A,B,C,D and E are constants related to experimental conditions and mineralogical properties of mineral.展开更多
An optimal measurement pose number searching method was designed to improve the pose selection method.Several optimal robot measurement configurations were added to an initial pre-selected optimal configuration set to...An optimal measurement pose number searching method was designed to improve the pose selection method.Several optimal robot measurement configurations were added to an initial pre-selected optimal configuration set to establish a new configuration set for robot calibration one by one.The root mean squares (RMS) of the errors of each end-effector poses after being calibrated by these configuration sets were calculated.The optimal number of the configuration set corresponding to the least RMS of pose error was then obtained.Calibration based on those poses selected by this algorithm can get higher end-effector accuracy,meanwhile consumes less time.An optimal pose set including optimal 25 measurement configurations is found during the simulation.Tracking errors after calibration by using these poses are 1.54,1.61 and 0.86 mm,and better than those before calibration which are 7.79,7.62 and 8.29 mm,even better than those calibrated by the random method which are 2.22,2.35 and 1.69 mm in directions X,Y and Z,respectively.展开更多
Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of ma...Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.展开更多
Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the ...Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the air/fuel ratio around the stoichiometric point and hence requires an accurate model for air charge estimation.However,high degrees of complexity and nonlinearity of the gas flow in the internal combustion engine make air charge estimation a challenging task.This is more obvious in engines with variable valve timing systems in which gas flow is more complex and depends on more functional variables.This results in models that are either quite empirical(such as look-up tables),not having interpretability and extrapolation capability,or physically based models which are not appropriate for onboard applications.Solving these problems,a novel semi-empirical model was proposed in this work which only needed engine speed,load,and valves timings for volumetric efficiency prediction.The accuracy and generalizability of the model is shown by its test on numerical and experimental data from three distinct engines.Normalized test errors are 0.0316,0.0152 and 0.24 for the three engines,respectively.Also the performance and complexity of the model were compared with neural networks as typical black box models.While the complexity of the model is less than half of the complexity of neural networks,and its computational cost is approximately 0.12 of that of neural networks and its prediction capability in the considered case studies is usually more.These results show the superiority of the proposed model over conventional black box models such as neural networks in terms of accuracy,generalizability and computational cost.展开更多
To study the alternating current (AC) impedance properties of Ag/AgC1 electrocardiograph (ECG) electrodes, the electrode pair was gel-to-gel connected, and then the electrical potential was recorded after a safe s...To study the alternating current (AC) impedance properties of Ag/AgC1 electrocardiograph (ECG) electrodes, the electrode pair was gel-to-gel connected, and then the electrical potential was recorded after a safe stimulating current passes through the electrode pair, so the AC impedance data of ECG electrodes were obtained. Varying the frequency and value of stimulating current, the detailed comparison and analysis of AC impedance properties of the electrodes were performed, and the stability was further characterized by using the continuous measurement within 24 h. The experimental results show that the AC impedance values of electrodes decreased, and then slightly increased with the increase of frequency of stimulating current. The minimum AC impedance value was obtained when the frequency was changed to 10 kHz. When the stimulating current increased, the AC impedance values of electrodes showed a slight decrease, but did not change significantly. Besides, the continuous measurement results show that the impedance value presented a significant increase in the initial 30 min, and then was stabilized in the following measuring process.展开更多
Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters...Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters. So, in order to improve the performance index, tight control of two parameters within a given range and reducing their fluctuation are indispensable. However, control-oriented models and control strategies are very weak junctures in the PEMFC development. A predictive control algorithm was presented based on their model established by input-output data and operating experiences. It adjusts the operating temperature to 80 ℃. At the same time, the optimized region of stoichiometric oxygen is kept between 1.8?2.2. Furthermore, the control algorithm adjusts the variants quickly to the destination value and makes the fluctuation of the variants the least. According to the test results, compared with traditional fuzzy and PID controllers, the designed controller shows much better performance.展开更多
文摘For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.
基金Project(2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject(2008AA030502) supported by the National High-Tech Research and Development Program of ChinaProject(GUIKEJI0639032) supported by the Science Fund Project of Guangxi Province, China
文摘The sodium expansion curves of semi-graphitic cathode measured with the improved Rapoport-Samoilenko apparatus. The and TiB2/C composite cathode with different TiB2 contents were mathematic model of the sodium expansion was deduced on the basis of the experimental results. The sodium expansion parameter (a) and penetration rate factor (Q), were introduced into the model The model was validated with the experimental sodium expansion curves self-measured and reported. The results show that the variation tendency of the sodium expansion parameter (a) and penetration rate factor (Q) is consistent with that of the experimental curves. The model is capable of not only conveniently judging the cathode quality, but also favorably establishing a unified standard of the resistance to sodium penetration of cathode.
基金Project(50302016) supported by the National Natural Science Foundation of China
文摘Li2Fe0.9Mn0.1SiO4/C composites were synthesized by using X-ray diffractometry (XRD), scanning electron microscopy (SEM) glucose as carbon source. The samples were characterized by and electrochemical measurements. All Li2Fe0.9Mn0.1SiO4/C composites are of the similar crystal structure. With increasing the carbon content in the range of 5%-20% (mass fraction), the diffraction peaks in XRD patterns broaden and the particle sizes and the tap density of samples decrease. The Li2Fe0.9Mn0.1SiO4/C composites with carbon content of 14.12% show excellent electrochemical performances with an initial discharge capacity of 154.7 mA.h/g at C/16 rate, and the capacity retention remains 92.2% after 30 cycles.
基金Project(2006AA05Z132) supported by the National High-tech Research and Development Program of ChinaProjects(50871050, 50961009) supported by the National Natural Science Foundation of China+1 种基金Project(2010ZD05) supported by the Natural Science Foundation of Inner Mongolia, ChinaProject(NJzy08071) supported by the High Education Science Research Program of Inner Mongolia, China
文摘In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were studied with an X-ray diffractometer (XRD) and a high resolution transmission electronic microscope (HRTEM). An investigation on the thermal stability of the as-spun alloys was carried out with a differential scanning calorimeter (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results demonstrate that the substitution of Co for Ni does not alter the major phase of Mg2Ni but results in the formation of secondary phase MgCo2. No amorphous phase is detected in the as-spun Co-free alloy,but a certain amount of amorphous phase is clearly found in the as-spun Co-containing alloys. The substitution of Co for Ni exerts a slight influence on the hydriding kinetics of the as-spun alloy. However,it dramatically enhances the dehydriding kinetics of the as-cast and spun alloys. As Co content (x) increases from 0 to 0.4,the hydrogen desorption capacity increases from 0.19% to 1.39% (mass fraction) in 20 min for the as-cast alloy,and from 0.89% to 2.18% (mass fraction) for the as-spun alloy (30 m/s).
基金Projects(20775010, 21075011) supported by the National Natural Science Foundation of ChinaProject(2008AA05Z405) supported by the National High-tech Research and Development Program of China+2 种基金Project(09JJ3016) supported by the Natural Science Foundation of Hunan Province, ChinaProject(09C066) supported by the Scientific Research Fund of Hunan Provincial Education Department, ChinaProject(2010CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, China
文摘A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear regression,contained four descriptors solely extracted from the molecular structure of compounds. The statistical results of the final model show that R2= 0.982 4 and S=0.869 8 (where R is the correlation coefficient and S is the standard deviation). To test its predictive ability,the model was further used to predict the 13C NMR spectra of the carbinol carbon atoms of other nine compounds which were not included in the developed model. The average relative errors are 0.94% and 1.70%,respectively,for the training set and the predictive set. The model is statistically significant and shows good stability for data variation as tested by the leave-one-out (LOO) cross-validation. The comparison with other approaches also reveals good performance of this method.
基金Project(2006AA03Z523) supported by the National High-tech Research and Development Program of China
文摘The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η'(MgZn2)and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120℃, 24h + 180 ℃, 30 min + 120 ℃, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition.
基金Projects(50871050,50961001) supported by the National Natural Science Foundation of ChinaProject(2010ZD05) supported by the Natural Science Foundation of Inner Mongolia,ChinaProject(NJzy08071) supported by the High Education Science Research Program of Inner Mongolia,China
文摘A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous MgzNi-type Mg2Nil-xMnx (x=0, 0. 1, 0.2, 0.3, 0.4) alloys were synthesized by the melt-spinning technique. The structures of the as-cast and spun alloys were studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results show that the as-spun Mn-free alloy holds a typical nanocrystalline structure, whereas the as-spun alloys containing Mn display a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni intensifies the glass forming ability of the Mg2Ni-type alloy. The hydrogen absorption and desorption capacities and kinetics of the alloys increase with increasing the spinning rate, for which the nanocrystalline and amorphous structure produced by the melt spinning is mainly responsible. The substitution of Mn for Ni evidently improves the hydrogen desorption performance. The hydrogen desorption capacities of the as-cast and spun alloys rise with the increase in the percentage of Mn substitution.
基金Projects(61672542,61573380)supported by the National Natural Science Foundation of China
文摘For the diagnosis of glaucoma,optical coherence tomography(OCT)is a noninvasive imaging technique for the assessment of retinal layers.To accurately segment intraretinal layers in an optic nerve head(ONH)region,we proposed an automatic method for the segmentation of three intraretinal layers in eye OCT scans centered on ONH.The internal limiting membrane,inner segment and outer segment,Bruch’s membrane surfaces under vascular shadows,and interaction of multiple high-reflectivity regions in the OCT image can be accurately segmented through this method.Then,we constructed a novel spatial-gradient continuity constraint,termed spatial-gradient continuity constraint,for the correction of discontinuity between adjacent image segmentation results.In our experiment,we randomly selected 20 B-scans,each annotated three retinal layers by experts.Signed distance errors of?0.80μm obtained through this method are lower than those obtained through the state-of-art method(?1.43μm).Meanwhile,the segmentation results can be used as bases for the diagnosis of glaucoma.
文摘Surface roughness of quartz particles was determined by measuring the specific surface area of particles.The wettability characteristics of particles were determined by measuring the flotation rate using a laboratory flotation cell.Experimental results show that the rod mill product has higher roughness than the ball mill product.For the particles with larger surface roughness,the flotation kinetics constant is also higher.Finally,empirical relationships between surface roughness(r) and the flotation kinetics constant(k) of quartz particles as k=A+Br+Cr0.5lnr+D/lnr+E/r and k=A+Br are presented,in which A,B,C,D and E are constants related to experimental conditions and mineralogical properties of mineral.
基金Project(2008AA04Z203) supported by the National High Technology Research and Development Program of China
文摘An optimal measurement pose number searching method was designed to improve the pose selection method.Several optimal robot measurement configurations were added to an initial pre-selected optimal configuration set to establish a new configuration set for robot calibration one by one.The root mean squares (RMS) of the errors of each end-effector poses after being calibrated by these configuration sets were calculated.The optimal number of the configuration set corresponding to the least RMS of pose error was then obtained.Calibration based on those poses selected by this algorithm can get higher end-effector accuracy,meanwhile consumes less time.An optimal pose set including optimal 25 measurement configurations is found during the simulation.Tracking errors after calibration by using these poses are 1.54,1.61 and 0.86 mm,and better than those before calibration which are 7.79,7.62 and 8.29 mm,even better than those calibrated by the random method which are 2.22,2.35 and 1.69 mm in directions X,Y and Z,respectively.
文摘Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.
文摘Volumetric efficiency and air charge estimation is one of the most demanding tasks in control of today's internal combustion engines.Specifically,using three-way catalytic converter involves strict control of the air/fuel ratio around the stoichiometric point and hence requires an accurate model for air charge estimation.However,high degrees of complexity and nonlinearity of the gas flow in the internal combustion engine make air charge estimation a challenging task.This is more obvious in engines with variable valve timing systems in which gas flow is more complex and depends on more functional variables.This results in models that are either quite empirical(such as look-up tables),not having interpretability and extrapolation capability,or physically based models which are not appropriate for onboard applications.Solving these problems,a novel semi-empirical model was proposed in this work which only needed engine speed,load,and valves timings for volumetric efficiency prediction.The accuracy and generalizability of the model is shown by its test on numerical and experimental data from three distinct engines.Normalized test errors are 0.0316,0.0152 and 0.24 for the three engines,respectively.Also the performance and complexity of the model were compared with neural networks as typical black box models.While the complexity of the model is less than half of the complexity of neural networks,and its computational cost is approximately 0.12 of that of neural networks and its prediction capability in the considered case studies is usually more.These results show the superiority of the proposed model over conventional black box models such as neural networks in terms of accuracy,generalizability and computational cost.
基金Project(111gpy06) supported by Fundamental Research Funds for the Central Universities,ChinaProject(101055807) supported by the Innovative Experiment Plan for College Students of Sun Yat-sen University,ChinaProject(KF201115) supported by the Opening Fund of Laboratory Sun Yat-sen University,China
文摘To study the alternating current (AC) impedance properties of Ag/AgC1 electrocardiograph (ECG) electrodes, the electrode pair was gel-to-gel connected, and then the electrical potential was recorded after a safe stimulating current passes through the electrode pair, so the AC impedance data of ECG electrodes were obtained. Varying the frequency and value of stimulating current, the detailed comparison and analysis of AC impedance properties of the electrodes were performed, and the stability was further characterized by using the continuous measurement within 24 h. The experimental results show that the AC impedance values of electrodes decreased, and then slightly increased with the increase of frequency of stimulating current. The minimum AC impedance value was obtained when the frequency was changed to 10 kHz. When the stimulating current increased, the AC impedance values of electrodes showed a slight decrease, but did not change significantly. Besides, the continuous measurement results show that the impedance value presented a significant increase in the initial 30 min, and then was stabilized in the following measuring process.
基金Project (2003AA517020) supported by the National High-Tech Research and Development Program of China
文摘Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters. So, in order to improve the performance index, tight control of two parameters within a given range and reducing their fluctuation are indispensable. However, control-oriented models and control strategies are very weak junctures in the PEMFC development. A predictive control algorithm was presented based on their model established by input-output data and operating experiences. It adjusts the operating temperature to 80 ℃. At the same time, the optimized region of stoichiometric oxygen is kept between 1.8?2.2. Furthermore, the control algorithm adjusts the variants quickly to the destination value and makes the fluctuation of the variants the least. According to the test results, compared with traditional fuzzy and PID controllers, the designed controller shows much better performance.