期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
High-performance supercapacitor based on 1D cobalt-based coordination polymer
1
作者 RONG Hongren GAO Gexiang +5 位作者 LIU Zhiwei ZHOU Ke SU Lixin HUANG Hao LIU Wenlong LIU Qi 《无机化学学报》 北大核心 2025年第6期1183-1195,共13页
A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal st... A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal structure was characterized.In a three-electrode system,Co-BD,as the electrode material for supercapacitors,achieved a specific capacitance of 830 F·g^(-1)at 1 A·g^(-1),equivalent to a specific capacity of 116.4 mAh·g^(-1),and exhibited high-rate capability,reaching 212 F·g^(-1)at 20 A·g^(-1).Impressively,Co-BD||rGO(reduced graphene oxide),representing an asymmetrical supercapacitor,owns a higher energy density of 14.2 Wh·kg^(-1)at 0.80 kW·kg^(-1),and an excellent cycle performance(After 4000 cycles at 1 A·g^(-1),the capacitance retention was up to 94%).CCDC:2418872. 展开更多
关键词 SUPERCAPACITOR cobalt compound coordination polymers crystal structure electrode materials electrochemical performances
在线阅读 下载PDF
我国制备出超级电容器新材料
2
作者 新型 《化工新型材料》 CAS CSCD 北大核心 2014年第7期201-201,共1页
郑州大学化学与分子工程学院副教授陈卫华带领课题组,率先利用部分离子置换的方法制备出高性能硫化物超级电容器电极材料。相关成果日前发表于《材料化学》杂志。
关键词 超级电容器 材料 制备 《材料化学》 工程学院 大学化学 课题组 硫化物
在线阅读 下载PDF
Chiral inorganic nanocatalysts for electrochemical and enzyme⁃mimicked biosensing
3
作者 LIU Chuang SUN Lichao ZHANG Qingfeng 《无机化学学报》 北大核心 2025年第1期59-78,共20页
In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intrig... In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas. 展开更多
关键词 chiral inorganic nanomaterial chiral plasmonic electrochemical biosensing enzyme‑mimicked biosensing asymmetric nanocatalysis
在线阅读 下载PDF
A review of the use of electrospinning in the preparation of flexible lithium-ion batteries
4
作者 XING Jia-yi ZHANG Yu-zhuo +1 位作者 FENG Shu-xin JI Ke-meng 《新型炭材料(中英文)》 北大核心 2025年第2期270-292,共23页
Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIB... Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIBs,which are foldable and have high energy densities,are be-coming increasingly important as power sources for wear-able devices,flexible electronics,and mobile energy applica-tions.Carbon materials,especially carbon nanofibers,are pivotal in improving the performance of FLIBs by increas-ing electrical conductivity,chemical stability,and surface area,as well as reducing costs.These materials also play a significant role in establishing conducting networks and im-proving structural integrity,which are essential for extend-ing the cycle life and enhancing the safety of the batteries.This review considers the role of electrospinning in the fabrication of critical FLIB components,with a particular emphasis on the integration of carbon materials.It explores strategies to optimize FLIB performance by fine-tuning the electrospinning para-meters,such as electric field strength,spinning rate,solution concentration,and carbonization process.Precise control over fiber properties is crucial for enhancing battery reliability and stability during folding and bending.It also highlights the latest research findings in carbon-based electrode materials,high-performance electrolytes,and separator structures,discussing the practical challenges and opportunities these materials present.It underscores the significant impact of carbon materials on the evolution of FLIBs and their potential to shape future energy storage technologies. 展开更多
关键词 Electrospinning technology Flexible lithium-ion batteries(FLIBs) Carbon material application Nanofiber electrodes Electrochemical energy storage and conversion
在线阅读 下载PDF
A review of petroleum asphalt-based carbon materials in electrochemical energy storage 被引量:3
5
作者 DU Shao-xiong KONG Ling-yu +6 位作者 LIU Lu CAO Zi-yang WU Xi SUN Bo LI Zheng-xuan YANG Wang LI Yong-feng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第6期1088-1107,共20页
Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromat... Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromatic hydrocarbon content,appropriate modification can increase its value and expand its energy storage applications.Current research progress on the common preparation methods of petroleum asphalt-based carbon materials,including template-assisted pyrolysis,molten salt treatment,activation,heteroatom doping,and pre-oxidation is reviewed,and its use in supercapacitors and alkali metal ion batteries,is also elaborated.Feasible solutions for the current problems with petroleum asphalt are proposed,with the aim of providing insights into its high value-added utilization. 展开更多
关键词 Petroleum asphalt Carbon materials PREPARATION ELECTROCHEMISTRY Energy storage
在线阅读 下载PDF
Research progress on carbon-based zinc-ion capacitors
6
作者 LUO Jun-hui XIAO Hao-ming +3 位作者 PENG Jun WANG Fu-jian LUO Xian-you CHEN Yong 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期918-945,共28页
Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have othe... Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use. 展开更多
关键词 Zinc-ion capacitors Electrochemical performance Carbon materials Pore structure Surface chemical properties
在线阅读 下载PDF
韩国科学家研究石墨烯储能应用取得新成果
7
《电源技术》 CAS CSCD 北大核心 2015年第3期438-438,共1页
韩国材料学家在《材料化学》上发布了石墨烯在储能应用方面的最新研究成果,引起了世界各国研究人员的关注。该论文的8位作者将雾状氧化石墨烯喷入高温有机溶剂中,形成适用于电极的绒球态微粒,并在文章中讨论了其雾流辅助深炸工艺的成果。
关键词 氧化石墨 应用 储能 韩国 科学家 《材料化学》 研究成果 研究人员
在线阅读 下载PDF
日本研究发现提高燃料电池性能的新方法
8
《电源技术》 CAS CSCD 北大核心 2012年第12期1769-1770,共2页
日本的一个研究小组近日在美国期刊《材料化学》网络版上发表报告称,他们发现了向镨镍氧化物中添加镓和铜能提升氧化物的氧气透过率的原理。
关键词 电池性能 日本 燃料 《材料化学》 氧气透过率 氧化物 网络版
在线阅读 下载PDF
“人工叶”太阳电池模拟自然发电
9
《电源技术》 CAS CSCD 北大核心 2010年第10期983-983,共1页
美国北卡罗来纳州大学的一组研究人员日前公布了一种基于水凝胶技术的太阳能发电装置——人工叶。研究人员称,这种水基太阳电池不但能够和硅基太阳电池一样产生电力,而且在成本和环境友好性上更具优势,使模拟自然产生电能的设想离现... 美国北卡罗来纳州大学的一组研究人员日前公布了一种基于水凝胶技术的太阳能发电装置——人工叶。研究人员称,这种水基太阳电池不但能够和硅基太阳电池一样产生电力,而且在成本和环境友好性上更具优势,使模拟自然产生电能的设想离现实又近了一步。相关研究发表在《材料化学》杂志网络版上。 展开更多
关键词 太阳能发电装置 太阳电池 自然 模拟 人工 北卡罗来纳州 《材料化学》 研究人员
在线阅读 下载PDF
美开发天然阻燃剂,无有毒物质释放
10
《工程塑料应用》 CAS CSCD 北大核心 2015年第11期26-26,共1页
美国得克萨斯大学的克里斯托弗.埃里森领导的研究小组已经开发出一种用于聚氨酯泡沫的天然阻燃剂,不会向空气中释放有毒物质。聚多巴胺的合成涂层(由天然化合物多巴胺制成)可作为聚氨酯泡沫的阻燃剂0该材料天然存在于海洋贝类,可... 美国得克萨斯大学的克里斯托弗.埃里森领导的研究小组已经开发出一种用于聚氨酯泡沫的天然阻燃剂,不会向空气中释放有毒物质。聚多巴胺的合成涂层(由天然化合物多巴胺制成)可作为聚氨酯泡沫的阻燃剂0该材料天然存在于海洋贝类,可替代目前众多商业添加剂。研究成果于2015年9月9日发表在《材料化学》杂志上。 展开更多
关键词 天然化合物 有毒物质 阻燃剂 开发 美国得克萨斯大学 《材料化学》 聚氨酯泡沫 海洋贝类
在线阅读 下载PDF
郑州航空工业管理学院制备出轻质电磁吸波剂
11
作者 新型 《化工新型材料》 CAS CSCD 北大核心 2018年第9期276-276,共1页
日前,郑州航空工业管理学院教授张锐课题组通过组分选择、结构调控形成了新型电磁吸波剂,为减轻当前电磁污染以及军事隐身提供了新思路。相关研究发表于《材料化学》杂志。随着现代科学技术的飞速发展,电磁辐射造成了不容忽视的电磁... 日前,郑州航空工业管理学院教授张锐课题组通过组分选择、结构调控形成了新型电磁吸波剂,为减轻当前电磁污染以及军事隐身提供了新思路。相关研究发表于《材料化学》杂志。随着现代科学技术的飞速发展,电磁辐射造成了不容忽视的电磁污染、电磁干扰、信息泄露等问题,开发研究新型电磁吸波材料是减小电磁污染的有效措施。 展开更多
关键词 电磁污染 管理学院 航空工业 吸波剂 郑州 轻质 制备 《材料化学》
在线阅读 下载PDF
未来窗户或可发电
12
《农村电工》 2011年第3期47-47,共1页
据美国物理学家组织网近日报道,美国能源部布鲁克海文国家实验室和洛斯阿拉莫斯国家实验室的科学家们.研发出了一种可吸收光线并将其大面积转化成为电能的新型透明薄膜。这种薄膜以半导体和富勒烯为原料,具有微蜂窝结构。相关研究发... 据美国物理学家组织网近日报道,美国能源部布鲁克海文国家实验室和洛斯阿拉莫斯国家实验室的科学家们.研发出了一种可吸收光线并将其大面积转化成为电能的新型透明薄膜。这种薄膜以半导体和富勒烯为原料,具有微蜂窝结构。相关研究发表在最新一期的《材料化学》杂志上,论文称该技术可被用于开发透明的太阳能电池板.甚至还可以用这种材料制成可以发电的窗户. 展开更多
关键词 发电 窗户 国家实验室 美国能源部 洛斯阿拉莫斯 《材料化学》 太阳能电池板 透明薄膜
在线阅读 下载PDF
Physico-chemical properties and microstructure of hydroxyapatite-316L stainless steel biomaterials 被引量:5
13
作者 邹俭鹏 阮建明 +2 位作者 黄伯云 刘建本 周小霞 《Journal of Central South University of Technology》 2004年第2期113-118,共6页
Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated.... Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated. The results show that the sintering shrinkage of HA-316L SS composites decreases from 27.38% to 8.87% for cylinder sample or from 27.18% to 8.62% for cuboid sample with decreasing the volume ratio of HA to 316L SS, which leads to higher sintering activity of HA compared with that of 316L SS. The compressive strength of HA-316L SS composites changes just like parabolic curve (245.3→126.3→202.8 MPa) with reducing the volume ratio of HA to 316L SS. Bending strength increases from 86.3MPa to 124. 2 MPa with increasing the content of 316L SS. Furthermore, comprehensive mechanical properties of 1.0∶3.0 (volume ratio of HA to 316L SS) composite are optimal with compressive strength and bending strength equal to 202.8 MPa and 124.2 MPa, respectively. The (microstructure) and metallurgical structure vary regularly with the volume ratio of HA to 316L SS. Some chemical reaction takes place at the interface of the composites during sintering. 展开更多
关键词 hydroxyapatite-316L stainless steel biomaterial sintering activity mechanical property MICROSTRUCTURE SEM EDXA
在线阅读 下载PDF
Synthesis and thermoelectric properties of Mg_2Si_(1-x)Sn_x solid solutions by microwave irradiation 被引量:4
14
作者 周书才 白晨光 《Journal of Central South University》 SCIE EI CAS 2012年第9期2421-2424,共4页
In order to reduce the oxidizing and volatilizing caused by Mg element in the traditional methods for synthesizing Mg2Sil-xSnx (x=0.2, 0.4, 0.6, 0.8) solid solutions, microwave irradiation techniques were used in pr... In order to reduce the oxidizing and volatilizing caused by Mg element in the traditional methods for synthesizing Mg2Sil-xSnx (x=0.2, 0.4, 0.6, 0.8) solid solutions, microwave irradiation techniques were used in preparing them as thermoelectric materials. Structure and phase composition of the obtained materials were investigated by X-ray diffraction (XRD). The electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature from 300 to 750 K. It is found that Mg2Si1-xSnx solid solutions are well formed with excessive content of 5% (molar fraction) Mg from the stoichiometric MgESil.xSnx under microwave irradiation. A maximum dimensionless figure of merit, ZT, of about 0.26 is obtained for Mg2Si1-xSnx solid solutions at about 500 K for x=0.6. 展开更多
关键词 Mg2Si1-xSnx thermoelectric material solid solution microwave synthesis
在线阅读 下载PDF
Improved oxidation resistance of chemical vapor reaction SiC coating modified with silica for carbon/carbon composites 被引量:4
15
作者 杨鑫 邹艳红 +4 位作者 黄启忠 苏哲安 常新 张明瑜 肖勇 《Journal of Central South University》 SCIE EI CAS 2010年第1期1-6,共6页
To protect carbon/carbon (C/C) composites from oxidation, a SiC coating modified with SiO2 was prepared by a complex technology. The inner SiC coating with thickness varying from 150 to 300 μm was initially coated by... To protect carbon/carbon (C/C) composites from oxidation, a SiC coating modified with SiO2 was prepared by a complex technology. The inner SiC coating with thickness varying from 150 to 300 μm was initially coated by chemical vapor reaction (CVR): a simple and cheap technique to prepare the SiC coating via siliconizing the substrate that was exposed to the mixed vapor (Si and SiO2) at high temperatures (1 923?2 273 K). Then the as-prepared coating was processed by a dipping and drying procedure with tetraethoxysilane as source materials to form SiO2 to fill the cracks and holes. Oxidation tests show that, after oxidation in air at 1 623 K for 10 h and thermal cycling between 1 623 K and room temperature 5 times, the mass loss of the CVR coated sample is up to 18.21%, while the sample coated with modified coating is only 5.96%, exhibiting an obvious improvement of oxidation and thermal shock resistance of the coating. The mass loss of the modified sample is mainly contributed to the reaction of C/C substrate with oxygen diffusing through the penetrating cracks formed in thermal shock tests. 展开更多
关键词 carbon/carbon composites COATING OXIDATION SIC
在线阅读 下载PDF
Preparation and electrochemical characterization of C/PANI composite electrode materials 被引量:6
16
作者 赖延清 李晶 +3 位作者 李劼 卢海 张治安 刘业翔 《Journal of Central South University of Technology》 EI 2006年第4期353-359,共7页
Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on th... Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2S2O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on the surface of well-dispersed nano-sized carbon black for supercapacitor. The micro-structure of the C/PANI composite electrode materials were analyzed by SEM. The electrochemical properties of C/ PANI and PANI composite electrode were characterized by means of the galvanostatic charge-discharge experiment, cyclic voltammetric measurement and impedance spectroscopy analysis. The results show that by adding the nano-sized carbon black in the process of chemical polymerization of the aniline, the polyaniline can be in situ polymerized and well-coated onto the carbon black particles, which may effectively improve the aggregation of particles and the electrolyte penetration. What’s more , the maximum of specific capacitance of C/PANI electrode 437.6F·g -1 can be attained. Compared with PANI electrode, C/PANI electrode shows more desired capacitance characteristics, smaller internal resistance and better cycle performance. 展开更多
关键词 SUPERCAPACITOR POLYANILINE composite electrode materials electrochemical properties
在线阅读 下载PDF
Facile synthesis of Sb@Sb2O3/reduced graphene oxide composite with superior lithium-storage performance 被引量:4
17
作者 ZHOU Xiao-zhong LU He-jie +2 位作者 TANG Xing-chang ZENG Ya-ping YU Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1493-1502,共10页
Sb-based materials have been considered one of the most promising anode electrode materials for lithium-ion batteries,whereas they were commonly synthesized through time-consuming and costly processes.Here,Sb@Sb2O3/re... Sb-based materials have been considered one of the most promising anode electrode materials for lithium-ion batteries,whereas they were commonly synthesized through time-consuming and costly processes.Here,Sb@Sb2O3/reduced graphene oxide(Sb@Sb2O3/rGO)composite was successfully synthesized by a facile one-pot chemical method at ambient temperature.Based on the XRD and TGA analysis,the mass fractions of Sb and Sb2O3 in the Sb@Sb2O3/rGO composite are ca.34.05%and 26.6%,respectively.When used as an alternative electrode for lithium ion batteries,a high reversible capacity of 790.9 mA·h/g could be delivered after 200 cycles with the capacity retention of 93.8%at a current density of 200 mA/g.And a capacity of 260 mA·h/g could be maintained even at 2000 mA/g.These excellent electrochemical properties can be attributed to its well-constructed nanostructure.The Sb and Sb2O3 particles with size of 10 nm were tightly anchored on rGO sheets through electronic coupling,which could not only alleviate the stress induced by the volume expansion,suppress the aggregation of Sb and Sb2O3 particles,but also improve the electron transfer ability during cycling. 展开更多
关键词 Sb@Sb2O3/rGO composite synthesis electrochemical performance lithium-ion batteries
在线阅读 下载PDF
Preparation and characterization of different surface modified SiCp reinforced Al-matrix composites 被引量:11
18
作者 LÜ Pin-hui WANG Xiao-feng +2 位作者 DONG Cui-ge PENG Chao-qun WANG Ri-chu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2567-2577,共11页
The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with C... The effects of SiCp surface modifications(Cu coating,Ni coating and Ni/Cu coating)on the microstructures and mechanical properties of Al matrix composites were investigated.Surface modification of SiC particles with Cu,Ni and Cu/Ni,respectively,was carried out by electroless plating method.SiCp/Al composites were prepared by hot pressed sintering followed by hot extrusion.The results show that the surface modification of SiC particles plays an effective role,which is relative to the type of surface coating,and the interfacial bonding become stronger in the following order:untreated SiCp<Ni(Cu)-coated SiCp<Ni/Cu-coated SiCp.The Ni/Cu-coated SiCp/Al composites exhibit the best comprehensive mechanical properties,with ultimate tensile strength(σUTS)and fracture strain(εf)of 389 MPa and 6.3%,respectively.Compared with that of untreated-SiCp/Al composites,theσUTS andεf are enhanced by 19.3%and 57.5%. 展开更多
关键词 SiCp/Al composite surface modification electroless plating mechanical properties interfacial bonding
在线阅读 下载PDF
Carbonaceous mesophase spherule/activated carbon composite as anode materials for super lithium ion capacitors 被引量:3
19
作者 杨娟 周向阳 +1 位作者 李劼 娄世菊 《Journal of Central South University》 SCIE EI CAS 2011年第4期972-977,共6页
A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the a... A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the active carbon shell precursor.The structures of the composites were examined by scanning electron microscopy and X-ray diffractometry.The electrochemical performance was investigated in electric double layer capacitor and half-cell.The results show that,the composite exhibits good performance in both capacitor and battery with a high reversible capacity of 306.6 mA·h/g(0.2C) in the half-cell,along with a capacitance of 25.8 F/g in the capacitor when an optimum ratio of carbonaceous mesophase spherules to active carbon is adopted.The composite also shows a favorable rate performance and good cycle ability.A working model of this anode in super lithium ion capacitors was established. 展开更多
关键词 super lithium ion capacitor carbonaceous mesophase spherule active carbon compound anode
在线阅读 下载PDF
Effect of nanofibers at surface of carbon fibers on microstructure of carbon/carbon composites during chemical vapor infiltration 被引量:1
20
作者 肖鹏 陈洁 +1 位作者 徐先锋 卢雪峰 《Journal of Central South University》 SCIE EI CAS 2014年第7期2590-2595,共6页
Before densification by chemical vapor infiltration,carbon or SiC nanofibers were grown on the surface of carbon fibers by catalytic chemical vapor deposition using electroplated Ni as catalyst.The modification and me... Before densification by chemical vapor infiltration,carbon or SiC nanofibers were grown on the surface of carbon fibers by catalytic chemical vapor deposition using electroplated Ni as catalyst.The modification and mechanism of nanofibers on the pyrocarbon deposition during chemical vapor infiltration were investigated.The results show that the nanofibers improve the surface activity of the carbon fibers and become active nucleation centers during chemical vapor infiltration.They can induce the ordered deposition of pyrocarbon and adjust the interface bonding between pyrocarbon and carbon fibers during the infiltration. 展开更多
关键词 carbon nanofiber SiC nanofiber PYROCARBON interface bonding
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部