In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was p...In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was proposed. The proposed method was verified experimentally and numerically by implementing the scheme on engine block. In the implementation process, the following steps were identified to be important: 1) EMD technique in order to solve the feature extraction of vibration signals; 2) Vibration measurement for the purpose of confirming the structural weak regions of engine block in experiment; 3) Finite element modeling for the purpose of determining dynamic characteristic in time region and frequency region to affirm the comparability of response character corresponding to improvement schemes; 4) Adopting a feature index oflMF for structural improvement based on EMD and wavelet analysis. The obtained results show that IMF of signal is more sensitive to response character corresponding to improvement schemes. Finally, examination of the results confirms that the proposed vibration-based feature extraction method is very robust, and focuses on the relative merits of modification and full-scale structural optimization of engine, together with the creation of new low-vibration designs.展开更多
The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andf...The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.展开更多
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m...In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.展开更多
Determination of dissolution rate of alumina is one of the classical problems in aluminum electrolysis. A novel method which can measure the dissolution rate of alumina was presented. Effect of factors on dissolution ...Determination of dissolution rate of alumina is one of the classical problems in aluminum electrolysis. A novel method which can measure the dissolution rate of alumina was presented. Effect of factors on dissolution rate of alumina was studied intuitively and roundly using transparent quartz electrobath and image analysis techniques. Images about dissolution process of alumina were taken at an interval of fixed time from transparent quartz electrobath of double rooms. Gabor wavelet transforms were used for extracting and describing the texture features of each image. After subsampling several times, the dissolution rate of alumina was computed using these texture features in local neighborhood of samples. Regression equation of the dissolution rate of alumina was obtained using these dissolution rates. Experiments show that the regression equation of the dissolution rate of alumina is y=-0.000 5x^3+0.024 0x^2-0.287 3x+ 1.276 7 for Na3AIF6-AIF3-Al2O3-CaF2-LiF- MgF2 system at 920 ℃.展开更多
基金Project(50975192) supported by the National Natural Science Foundation of ChinaProject(10YFJZJC14100) supported by Tianjin Municipal Natural Science Foundation of China
文摘In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was proposed. The proposed method was verified experimentally and numerically by implementing the scheme on engine block. In the implementation process, the following steps were identified to be important: 1) EMD technique in order to solve the feature extraction of vibration signals; 2) Vibration measurement for the purpose of confirming the structural weak regions of engine block in experiment; 3) Finite element modeling for the purpose of determining dynamic characteristic in time region and frequency region to affirm the comparability of response character corresponding to improvement schemes; 4) Adopting a feature index oflMF for structural improvement based on EMD and wavelet analysis. The obtained results show that IMF of signal is more sensitive to response character corresponding to improvement schemes. Finally, examination of the results confirms that the proposed vibration-based feature extraction method is very robust, and focuses on the relative merits of modification and full-scale structural optimization of engine, together with the creation of new low-vibration designs.
基金Project(51675262)supported by the National Natural Science Foundation of ChinaProject(6140210020102)supported by the Advance Research Field Fund Project of ChinaProject(2016YFD0700800)supported by the National Key Research and Development Plan of China
文摘The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.
基金Project(61301095)supported by the National Natural Science Foundation of ChinaProject(QC2012C070)supported by Heilongjiang Provincial Natural Science Foundation for the Youth,ChinaProjects(HEUCF130807,HEUCFZ1129)supported by the Fundamental Research Funds for the Central Universities of China
文摘In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.
基金Projects(51101104,51072121) supported by the National Natural Science Foundation of ChinaProject(LS2010109) supported by the Key Laboratory Foundation of Liaoning Province,China
文摘Determination of dissolution rate of alumina is one of the classical problems in aluminum electrolysis. A novel method which can measure the dissolution rate of alumina was presented. Effect of factors on dissolution rate of alumina was studied intuitively and roundly using transparent quartz electrobath and image analysis techniques. Images about dissolution process of alumina were taken at an interval of fixed time from transparent quartz electrobath of double rooms. Gabor wavelet transforms were used for extracting and describing the texture features of each image. After subsampling several times, the dissolution rate of alumina was computed using these texture features in local neighborhood of samples. Regression equation of the dissolution rate of alumina was obtained using these dissolution rates. Experiments show that the regression equation of the dissolution rate of alumina is y=-0.000 5x^3+0.024 0x^2-0.287 3x+ 1.276 7 for Na3AIF6-AIF3-Al2O3-CaF2-LiF- MgF2 system at 920 ℃.