In order to reveal the relationship between the penecontemporaneous karstification and sedimentary microtopography in sequence stratigraphy,the sequence stratigraphic framework of Lianglitage formation in Upper Ordovi...In order to reveal the relationship between the penecontemporaneous karstification and sedimentary microtopography in sequence stratigraphy,the sequence stratigraphic framework of Lianglitage formation in Upper Ordovician is studied according to the well drilling,logging,geophysical data,detailed observations of core and the paleontology.The Lianglitage formation belongs to the sequence Ⅳ of Ordovician.The second member of Lianglitage formation is prograde sedimentation in highstand systems tract,and is favorable for developing reef flat.The development scale and thickness of reef flat are controlled by the variation of secondary sea level.The types and characteristics of karst in the highstand systems tract show that the late highstand systems tract is dissolved and cemented by the meteoric fresh water and mixed water.Penecontemporaneous karstification is developed at the top of parasequence and high place of geomorphology.Atmospheric diagenetic lens is formed.The developing regulations and controlling factors of penecontemporaneous karstification can provide new clues to the prediction and exploration of favorable reservoir in this area.展开更多
The reservoir conditions,oil and gas charge history and accumulation phases were studied for Yingshan Formation of Yuqi block,and an oil and gas accumulation model was established by using the techniques of reservoir ...The reservoir conditions,oil and gas charge history and accumulation phases were studied for Yingshan Formation of Yuqi block,and an oil and gas accumulation model was established by using the techniques of reservoir prediction,fluorescence thin section and fluid inclusion analysis under the guidance of the theories of oil and gas accumulation.The results indicate that the main rock types in Yingshan Formation are micrite and calcarenite.The carbonate reservoirs are of cave,fracture-pore and fracture types,and their physical properties are intermediate;there are at least four oil/gas charges,i.e.late Hercynian,Yanshanian,early Himalayan and middle Himalayan(Cenozoic).The most important charge periods are late Hercynian,early Himalayan and middle Himalayan;the oil and gas accumulation model is self source-lateral expulsion of hydrocarbon-multistage accumulation,or hydrocarbon sourced from and preserved in the same old rocks-long term expulsion of hydrocarbon-multistage accumulation.展开更多
Based on a synthetic geological study of drilling,well logging and seismic data,core observations and geochemical analysis,it is recognized that Triassic sedimentary facies in the Tahe area of Tarim Basin include brai...Based on a synthetic geological study of drilling,well logging and seismic data,core observations and geochemical analysis,it is recognized that Triassic sedimentary facies in the Tahe area of Tarim Basin include braided river deposits filling erosional valleys,and sublacustrine fan,canyon and delta facies.Braided river deposits filling erosional valleys are dominated by coarse-grained lithic quartz sandstone with oblique bedding,and represent the most important sedimentation type of sandstone in the study area.Sublacustrine fan and canyon facies are mainly distributed in the Middle Oil Member.Most delta sediments are deposited in highstand system tract(HST),Because of frequent changes in base level,delta sediments are commonly eroded and rarely preserved.Sedimentary cycles are clearly reflected by lithology,sedimentary structures and well logging data,and are closely related to the changes in lacustrine level.In accordance with the basic principle of sequence subdivision,seven type-I boundaries can be recognized in Triassic strata and six type-I sequences are subdivided correspondingly.In general,lowstand system tract(LST) is well developed within stratigraphic sequences and forms the main body of reservoir sandstone in this area;highstand system tract(HST) and transgressive system tract(TST) are often eroded by upper sequences or missed,Although various factors have different influences on terrestrial sequence stratigraphy,the classical sequence stratigraphy theory proposed by VAIL can be applied to terrestrial strata.展开更多
The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomen...The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.展开更多
基金Project(2008ZX05004-004)supported by the State Key Scientific Research Programs,ChinaProject(SZD0414)supported by the Sichuan Province Key Discipline Construction Project,ChinaProject(KZCX2-YW-Q05-01)supported by the Chinese Academy of Sciences Innovation Engineering Directional Project
文摘In order to reveal the relationship between the penecontemporaneous karstification and sedimentary microtopography in sequence stratigraphy,the sequence stratigraphic framework of Lianglitage formation in Upper Ordovician is studied according to the well drilling,logging,geophysical data,detailed observations of core and the paleontology.The Lianglitage formation belongs to the sequence Ⅳ of Ordovician.The second member of Lianglitage formation is prograde sedimentation in highstand systems tract,and is favorable for developing reef flat.The development scale and thickness of reef flat are controlled by the variation of secondary sea level.The types and characteristics of karst in the highstand systems tract show that the late highstand systems tract is dissolved and cemented by the meteoric fresh water and mixed water.Penecontemporaneous karstification is developed at the top of parasequence and high place of geomorphology.Atmospheric diagenetic lens is formed.The developing regulations and controlling factors of penecontemporaneous karstification can provide new clues to the prediction and exploration of favorable reservoir in this area.
基金Project(P05009) supported by the Item of Science and Technology and Development of SINOPEC Stock Limited Company of China
文摘The reservoir conditions,oil and gas charge history and accumulation phases were studied for Yingshan Formation of Yuqi block,and an oil and gas accumulation model was established by using the techniques of reservoir prediction,fluorescence thin section and fluid inclusion analysis under the guidance of the theories of oil and gas accumulation.The results indicate that the main rock types in Yingshan Formation are micrite and calcarenite.The carbonate reservoirs are of cave,fracture-pore and fracture types,and their physical properties are intermediate;there are at least four oil/gas charges,i.e.late Hercynian,Yanshanian,early Himalayan and middle Himalayan(Cenozoic).The most important charge periods are late Hercynian,early Himalayan and middle Himalayan;the oil and gas accumulation model is self source-lateral expulsion of hydrocarbon-multistage accumulation,or hydrocarbon sourced from and preserved in the same old rocks-long term expulsion of hydrocarbon-multistage accumulation.
基金Project(2008ZX05002-005) supported by the State Major Special Science and Technology Foundation of China
文摘Based on a synthetic geological study of drilling,well logging and seismic data,core observations and geochemical analysis,it is recognized that Triassic sedimentary facies in the Tahe area of Tarim Basin include braided river deposits filling erosional valleys,and sublacustrine fan,canyon and delta facies.Braided river deposits filling erosional valleys are dominated by coarse-grained lithic quartz sandstone with oblique bedding,and represent the most important sedimentation type of sandstone in the study area.Sublacustrine fan and canyon facies are mainly distributed in the Middle Oil Member.Most delta sediments are deposited in highstand system tract(HST),Because of frequent changes in base level,delta sediments are commonly eroded and rarely preserved.Sedimentary cycles are clearly reflected by lithology,sedimentary structures and well logging data,and are closely related to the changes in lacustrine level.In accordance with the basic principle of sequence subdivision,seven type-I boundaries can be recognized in Triassic strata and six type-I sequences are subdivided correspondingly.In general,lowstand system tract(LST) is well developed within stratigraphic sequences and forms the main body of reservoir sandstone in this area;highstand system tract(HST) and transgressive system tract(TST) are often eroded by upper sequences or missed,Although various factors have different influences on terrestrial sequence stratigraphy,the classical sequence stratigraphy theory proposed by VAIL can be applied to terrestrial strata.
基金Project(50150503-12)supported by National Science and Technology Major Program of the Ministry of Science and Technology of ChinaProject(2010E-2103)supported by Research on Key Technology in Tarim Oilfield Exploration and Development,China
文摘The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.