期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
“毒”在战场之外:抗日战争时期《中央日报》防毒宣传研究
1
作者 朱昊 《自然科学史研究》 CSSCI CSCD 北大核心 2023年第4期418-434,共17页
第一次世界大战后,毒气这一新型武器开始为世界各国所关注。九一八事变后,面对可能受到的毒气威胁,中国民众产生了消极恐慌的心理,对于毒气的错误认识严重影响到正常生活。《中央日报》承担起官方对民众进行防毒宣传的责任,引导民众科... 第一次世界大战后,毒气这一新型武器开始为世界各国所关注。九一八事变后,面对可能受到的毒气威胁,中国民众产生了消极恐慌的心理,对于毒气的错误认识严重影响到正常生活。《中央日报》承担起官方对民众进行防毒宣传的责任,引导民众科学认识毒气,理性看待毒气。更重要的是告诉民众毒气可“防”可“消”可“治”,号召民众从心理上消除对毒气的恐惧,积极开展防毒自救工作,为民族和国家保存有生力量。 展开更多
关键词 抗日战争 《中央日报》 防毒宣传 毒气战 化学武器
在线阅读 下载PDF
《申报》与1874年日本侵台事件 被引量:2
2
作者 胡连成 《同济大学学报(社会科学版)》 2003年第5期51-57,81,共8页
在1874年日本侵台事件中,上海<申报>通过各种中外新闻渠道,以大量篇幅及时地、反复地加以报道;<申报>通过舆论促使国人警醒,敦促清政府采取外交及军事行动.通览这一时期<申报>对日本侵台事件的报道、评论,并对照其他... 在1874年日本侵台事件中,上海<申报>通过各种中外新闻渠道,以大量篇幅及时地、反复地加以报道;<申报>通过舆论促使国人警醒,敦促清政府采取外交及军事行动.通览这一时期<申报>对日本侵台事件的报道、评论,并对照其他历史文献,可以说<申报>所持立场基本上是公正的,报道基本上是客观的,基本上反映了当时国人的正义呼声. 展开更多
关键词 《中报》 日本侵台 清廷对策
在线阅读 下载PDF
A novel recurrent neural network forecasting model for power intelligence center 被引量:6
3
作者 刘吉成 牛东晓 《Journal of Central South University of Technology》 EI 2008年第5期726-732,共7页
In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was... In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was created through three steps. First, by combining with the general project uncertain element transmission theory (GPUET), the basic definitions of stochastic, fuzzy, and grey uncertain elements were given based on the principal types of uncertain information. Second, a power dynamic alliance including four sectors: generation sector, transmission sector, distribution sector and customers was established. The key factors were amended according to the four transmission topologies of uncertain elements, thus the new factors entered the power intelligence center as the input elements. Finally, in the intelligence handing background of PIC, by performing uncertain and recursive process to the input values of network, and combining unascertained mathematics, the novel load forecasting model was built. Three different approaches were put forward to forecast an eastern regional power grid load in China. The root mean square error (ERMS) demonstrates that the forecasting accuracy of the proposed model UMRNN is 3% higher than that of BP neural network (BPNN), and 5% higher than that of autoregressive integrated moving average (ARIMA). Besides, an example also shows that the average relative error of the first quarter of 2008 forecasted by UMRNN is only 2.59%, which has high precision. 展开更多
关键词 load forecasting uncertain element power intelligence center unascertained mathematics recurrent neural network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部