期刊文献+
共找到6,044篇文章
< 1 2 250 >
每页显示 20 50 100
Functional cartography of heterogeneous combat networks using operational chain-based label propagation algorithm
1
作者 CHEN Kebin JIANG Xuping +2 位作者 ZENG Guangjun YANG Wenjing ZHENG Xue 《Journal of Systems Engineering and Electronics》 2025年第5期1202-1215,共14页
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra... To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning. 展开更多
关键词 functional cartography heterogeneous combat network functional module label propagation algorithm operational chain
在线阅读 下载PDF
Modification of a ReaxFF potential at short range for energetic materials
2
作者 Weiyi Li Tao Wang +6 位作者 Wenhua Li Jintao Wang Wanxiao Guo Zexin Jiang Yilin Fang Xiyao Yun Ning Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期176-182,共7页
The ReaxFF can describe the properties of energetic materials(EMs)at equilibrium state,but does not work properly in simulating high-energy particle irradiation process because of its weak short-range interaction.In t... The ReaxFF can describe the properties of energetic materials(EMs)at equilibrium state,but does not work properly in simulating high-energy particle irradiation process because of its weak short-range interaction.In this paper,a modification was made for such a potential by connecting ZieglerBiersack-Littmark(ZBL)potential to ReaxFF-lg through comparing to Density Functional Theory(DFT)results to accurately describe short-range interactions.After modification,the newly fitted ReaxFF-lg/ZBL potential predicts better the equation of state for EMs In displacement cascade simulations,comparing to results from ab initio molecular dynamics(AIMD),ReaxFF-lg/ZBL presented the similar transferred energy from a primary knock-on atom to surrounding atoms,better than the original ReaxFF-lg potential.Further large-scale displacement cascade simulations indicated ReaxFF-lg/ZBL could be applied for cascade simulations with PKA energy from less than 1 keV to high energy(e.g.35 keV)cases,which is suitable for effectively simulating high-energy displacement cascades in EMs using molecular dynamics method. 展开更多
关键词 Molecular dynamics Potential modification Energetic materials Displacement cascade Density functional theory Ab initio molecular dynamics
在线阅读 下载PDF
DETERMINING THE STRUCTURES AND PARAMETERS OF RADIAL BASIS FUNCTION NEURAL NETWORKS USING IMPROVED GENETIC ALGORITHMS 被引量:1
3
作者 Meiqin Liu Jida Chen 《Journal of Central South University》 SCIE EI CAS 1998年第2期68-73,共6页
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t... The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks. 展开更多
关键词 RADIAL BASIS function neural network GENETIC algorithms Akaike′s information CRITERION OVERFITTING
在线阅读 下载PDF
An improved genetic algorithm for causal discovery
4
作者 MAO Tengjiao BU Xianjin +2 位作者 CAI Chunxiao LU Yue DU Jing 《Journal of Systems Engineering and Electronics》 2025年第3期768-777,共10页
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to... The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm. 展开更多
关键词 genetic algorithm(GA) causal discovery convergence rate fitness function mutation operator
在线阅读 下载PDF
Bayesian-based ant colony optimization algorithm for edge detection
5
作者 YU Yongbin ZHONG Yuanjingyang +6 位作者 FENG Xiao WANG Xiangxiang FAVOUR Ekong ZHOU Chen CHENG Man WANG Hao WANG Jingya 《Journal of Systems Engineering and Electronics》 2025年第4期892-902,共11页
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t... Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task. 展开更多
关键词 ant colony optimization(ACO) Bayesian algorithm edge detection transfer function.
在线阅读 下载PDF
Vehicle and onboard UAV collaborative delivery route planning:considering energy function with wind and payload
6
作者 GUO Jingfeng SONG Rui HE Shiwei 《Journal of Systems Engineering and Electronics》 2025年第1期194-208,共15页
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove... The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted. 展开更多
关键词 vehicle and onboard unmanned aerial vehicle(UAV)collaborative delivery energy consumption function route planning mixed integer linear programming model adaptive large neighborhood search(ALNS)algorithm
在线阅读 下载PDF
Adaptive immune-genetic algorithm for global optimization to multivariable function 被引量:9
7
作者 Dai Yongshou Li Yuanyuan +2 位作者 Wei Lei Wang Junling Zheng Deling 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期655-660,共6页
An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density opera... An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability. 展开更多
关键词 immune-genetic algorithm function optimization hyper-mutation density operator.
在线阅读 下载PDF
Utility function based fair data scheduling algorithm for OFDM wireless network 被引量:3
8
作者 Guo Kunqi Sun Lixin Jia Shilou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期731-738,共8页
A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subca... A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subcarrier allocation algorithm (DSAA) is proposed, to optimize the system model. The subcarrier allocation decision is made by the proposed DSAA according to the maximum value of total utility function with respect to the queue mean waiting time. Simulation results demonstrate that compared to the conventional algorithms, the proposed algorithm has better delay performance and can provide fairness under different loads by using different utility functions. 展开更多
关键词 OFDM SCHEDULING algorithm utility function.
在线阅读 下载PDF
Family genetic algorithms based on gene exchange and its application 被引量:1
9
作者 Li Jianhua Ding Xiangqian +1 位作者 Wang Sun'an Yu Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期864-869,共6页
Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not... Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not as good as it was expected to be. Criticism of this algorithm includes the slow speed and premature result during convergence procedure. In order to improve the performance, the population size and individuals' space is emphatically described. The influence of individuals' space and population size on the operators is analyzed. And a novel family genetic algorithm (FGA) is put forward based on this analysis. In this novel algorithm, the optimum solution families closed to quality individuals is constructed, which is exchanged found by a search in the world space. Search will be done in this microspace. The family that can search better genes in a limited period of time would win a new life. At the same time, the best gene of this micro space with the basic population in the world space is exchanged. Finally, the FGA is applied to the function optimization and image matching through several experiments. The results show that the FGA possessed high performance. 展开更多
关键词 genetic algorithms function optimization image matching population size individual space.
在线阅读 下载PDF
Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions 被引量:4
10
作者 谭冠政 周代明 +1 位作者 江斌 DIOUBATE Mamady I 《Journal of Central South University of Technology》 EI 2008年第6期845-852,共8页
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s... A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism. 展开更多
关键词 immune genetic algorithm multi-modal function optimization evolutionary computation elitist selection elitist crossover
在线阅读 下载PDF
Product quality prediction based on RBF optimized by firefly algorithm 被引量:3
11
作者 HAN Huihui WANG Jian +1 位作者 CHEN Sen YAN Manting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期105-117,共13页
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred... With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality. 展开更多
关键词 product quality prediction data pre-processing radial basis function swarm intelligence optimization algorithm
在线阅读 下载PDF
Multiple Seasonal Modifications in Enzymatic Flavour Formation in Tea
12
作者 Christiane Felfe Matthias Schemainda +2 位作者 Susanne Baldermann Naoharu Watanabe Peter Fleischmann 《茶叶》 2013年第4期308-316,共9页
Carotenoid cleavage enzymes isolated from Japanese Camellia sinensis leaves(cultivar Yabukita) were used for investigating the structural patterns of carotenoid cleavage enzymes.Fresh tea leaves were used for the isol... Carotenoid cleavage enzymes isolated from Japanese Camellia sinensis leaves(cultivar Yabukita) were used for investigating the structural patterns of carotenoid cleavage enzymes.Fresh tea leaves were used for the isolation of active enzymes and purified to single band stage in SDS PAGE gels after isoelectric focusing.The specific activity of the carotenoid cleavage enzymes was tested and the active fractions selected for further analysis.The sugar content and the amount of phosphate present in the purified enzymes were elucidated by the following methods:Phosphates were detected by phosphatase assays,fluorescence marker kits and ammoniumheptamolybdate complex measurements after incineration of the samples.Sugars were detected in gels using PAS reagent(periodide acid /Schiff reagent) staining and by GC-MS after hydrolysation of the proteins with trifluoric acid.Phosphorylations as well as glycosylations of the samples could be detected in all cases,thus giving evidence for an increasing phosphorylation level of proteins in Camellia sinensis from spring(1.84 g/mg) to autumn(2.39 g/mg) as well as the presence of at least four different sugars(arabinose,xylose,galactose and ribose).These secondary modifications of the carotenoid cleavage enzymes and their dependency on the harvesting season may well correspond to the changes on the functional level which were detected between spring(Michaelis Constant(K m) =9.45 mol/l) and autumn(K m= 17.16 mol/l) harvests. 展开更多
关键词 收获季节 风味酶 茶树 修改 类胡萝卜素 蛋白质水解 凝胶电泳 标记试剂
在线阅读 下载PDF
酶法改性豌豆蛋白及其在食品工业中的应用研究进展 被引量:1
13
作者 赵秋艳 陈伊超 +5 位作者 王田林 马燕 黄现青 赵建生 宋莲军 李天歌 《食品与发酵工业》 北大核心 2025年第15期401-408,共8页
豌豆蛋白具有价格低廉、氨基酸丰富和致敏性低等优点,是替代动物蛋白的优选植物蛋白之一。通过改性处理可以改善豌豆蛋白功能和营养健康上的不足,从而提升豌豆蛋白在食品领域的应用价值。酶法改性是改性豌豆蛋白中应用较多且效果较好的... 豌豆蛋白具有价格低廉、氨基酸丰富和致敏性低等优点,是替代动物蛋白的优选植物蛋白之一。通过改性处理可以改善豌豆蛋白功能和营养健康上的不足,从而提升豌豆蛋白在食品领域的应用价值。酶法改性是改性豌豆蛋白中应用较多且效果较好的改性方式之一。酶法改性中酶制剂的选择和处理方式不同导致的结果复杂多样。该文首先对豌豆蛋白的组成进行概述,接着总结了酶法改性豌豆蛋白的作用类型,最后综述了酶法改性豌豆蛋白在食品工业中的应用情况,以期为豌豆蛋白在食品原料和加工业中的发展提供理论支撑。 展开更多
关键词 酶法改性 豌豆蛋白 营养功能特性 食品工业
在线阅读 下载PDF
生物质基衍生炭的制备与功能化改性研究进展 被引量:1
14
作者 陆佳 王玉鹏 +1 位作者 苏小红 王怡心 《新能源进展》 北大核心 2025年第3期277-284,共8页
在“碳达峰、碳中和”战略背景下,利用生物质为碳源制备衍生炭材料是生物质资源化、高值化、减碳化重要的利用方式之一。生物质衍生炭被誉为“黑色黄金”,在吸附净化、催化、储能领域应用前景广阔。生物质衍生炭的结构特性及应用领域与... 在“碳达峰、碳中和”战略背景下,利用生物质为碳源制备衍生炭材料是生物质资源化、高值化、减碳化重要的利用方式之一。生物质衍生炭被誉为“黑色黄金”,在吸附净化、催化、储能领域应用前景广阔。生物质衍生炭的结构特性及应用领域与原料、制备及改性方法息息相关。基于生物质衍生炭组成与结构,系统梳理介绍了热解碳化法、水热碳化法、活化碳化法、模板法等常用的制备方法。为改善原始生物质衍生炭的固有缺陷以满足其特定的应用需求,在性能提升方面,归纳了酸碱、杂原子掺杂、金属盐及其氧化物等功能化改性方法。最后介绍机器学习在预测调控生物质衍生炭中的应用,并对未来研究重点及发展前景进行展望,以期为生物质衍生炭材料的制备与应用发展提供参考。 展开更多
关键词 生物质衍生炭 热解碳化 水热碳化 模板法 功能化改性
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:1
15
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
基于学习型多策略改进鲸鱼算法的路径规划研究 被引量:3
16
作者 岳凡 艾尔肯·亥木都拉 刘拴 《组合机床与自动化加工技术》 北大核心 2025年第2期46-51,56,共7页
为解决机器人在路径规划中路径过长与后期寻优停滞的问题,提出了一种学习型多策略改进鲸鱼优化算法(reinforcement learning multi-strategy improvement whale optimization algorithm,RLMIWOA),并在欧式距离的基础上引入了障碍物信息... 为解决机器人在路径规划中路径过长与后期寻优停滞的问题,提出了一种学习型多策略改进鲸鱼优化算法(reinforcement learning multi-strategy improvement whale optimization algorithm,RLMIWOA),并在欧式距离的基础上引入了障碍物信息与拐点信息,构建了路径规划适应度函数。首先,引入自适应帐篷映射初始化,使得初始化种群更加均匀;其次,引入了非线性收敛策略平衡算法的开发和探索阶段;然后,通过采用非线性加权因子对最优个体进行扰动,避免了其他个体对最优个体的“盲从”;最后,通过采用强化学习结合ε-精英逐维反向学习策略和动态局部最优逃生策略,提高了算法的收敛效率和跳出局部最优的能力。实验结果表明:RLMIWOA算法可以高效地找到最优路径,在路径搜索方面具有显著的优势。 展开更多
关键词 路径规划 强化学习 鲸鱼优化算法 适应度函数 局部最优
在线阅读 下载PDF
改进5G-R自适应高速铁路越区切换算法 被引量:2
17
作者 陈永 康婕 陶瑄 《北京航空航天大学学报》 北大核心 2025年第3期724-731,共8页
在高速行车条件下,越区切换作为未来高速铁路5G-R通信的关键技术,对于保障行车安全至关重要。下一代高速铁路5G-R无线通信系统越区切换算法采用固定切换参数,但当列车高速运行时,极易受到多普勒效应影响,导致切换成功率低,基于此,提出... 在高速行车条件下,越区切换作为未来高速铁路5G-R通信的关键技术,对于保障行车安全至关重要。下一代高速铁路5G-R无线通信系统越区切换算法采用固定切换参数,但当列车高速运行时,极易受到多普勒效应影响,导致切换成功率低,基于此,提出了一种考虑多普勒频移影响的改进5G-R自适应高速铁路越区切换算法。分析多普勒频移对切换成功率的影响,得到多普勒频移与切换成功率的关系函数;提出考虑多普勒频移影响的越区切换动态函数,设计余弦、余切、余割3种函数对切换迟滞门限及触发时延自适应调整;在不同多普勒频移及不同高铁场景下进行切换成功率的量化比较分析。研究结果表明:所提算法可有效调高切换成功率,在高架桥和山区场景下,余弦、余切、余割3种函数的切换成功率均优于对比算法,且满足中国无线通信系统切换成功率服务质量(QoS)大于99.5%的要求。研究结果为下一代高速铁路5G-R无线通信系统演进提供了理论参考依据。 展开更多
关键词 越区切换算法 5G-R 多普勒频移 动态函数 自适应切换
在线阅读 下载PDF
动态环境下改进BIT^(*)算法的机器人路径规划 被引量:1
18
作者 王晓军 崔锡杰 李晓航 《计算机工程与应用》 北大核心 2025年第7期361-369,共9页
针对批量通知树算法在小样本中搜索路径成功率低、大样本中规划效率低、路径冗余节点多以及无法躲避未知障碍物的问题,提出动态环境批量通知树算法。利用改进批量采样点策略将样本点均匀等间距处理,并改进批量采样点数量以及偏置采样点... 针对批量通知树算法在小样本中搜索路径成功率低、大样本中规划效率低、路径冗余节点多以及无法躲避未知障碍物的问题,提出动态环境批量通知树算法。利用改进批量采样点策略将样本点均匀等间距处理,并改进批量采样点数量以及偏置采样点位置,弥补搜索路径成功率低的缺点;加入惩罚项改进启发式函数,弥补路径规划效率低的缺点;再引入路径拉伸优化减少路径长度以及冗余节点,缩小采样范围。面对未知障碍物,利用反向生长搜索树先验信息提出临时目标点选取策略,并结合改进随机点、转向角以及新节点的快速扩展随机树(RRT)算法,避免重规划路径过分偏离以及不能及时躲避。与其他算法进行对比,结果表明:动态环境批量通知树算法规划路径成功率和效率更高,路径长度和拐点数更少,躲避未知障碍物性能更高,重规划路径更接近全局路径。 展开更多
关键词 批量通知树算法 反向生长搜索树 批量采样点策略 启发式函数 快速扩展随机树(RRT)算法 路径重规划
在线阅读 下载PDF
多障碍环境下巡检机器人路径规划优化研究 被引量:4
19
作者 乔道迹 张艳兵 《现代电子技术》 北大核心 2025年第1期130-134,共5页
针对大规模、密集的障碍物分布,高效地搜索最佳路径是一个挑战,为规划出更短的巡检路线,并实现多障碍环境下的灵活避障,文中提出一种多障碍环境下巡检机器人路径规划优化方法。使用二维矩阵构建巡检环境模型,应用D*算法在巡检环境模型... 针对大规模、密集的障碍物分布,高效地搜索最佳路径是一个挑战,为规划出更短的巡检路线,并实现多障碍环境下的灵活避障,文中提出一种多障碍环境下巡检机器人路径规划优化方法。使用二维矩阵构建巡检环境模型,应用D*算法在巡检环境模型中进行巡检机器人路径规划,并将传统D*算法中的扩展步长方式改变为自适应扩展步长,使机器人在面积较大的巡检场地能够更快地完成巡检;将代价函数由欧氏距离替换为切比雪夫诺距离和曼哈顿距离融合的代价函数,并引入了平滑度函数优化线路规划结果,使规划的路径更为平滑,在遇到由于多种原因产生的新障碍物时可以重新规划路径。通过实验结果可知,无论是静态地图还是动态地图,该方法均可以快速准确地规划出一条最佳路线,并且在多种环境中应用该方法能够高效获取路径规划结果。 展开更多
关键词 多障碍 巡检机器人 路径规划 D*算法 动态环境 扩展节点 代价函数 扩展步长
在线阅读 下载PDF
基于深度强化学习的游戏智能引导算法 被引量:2
20
作者 白天 吕璐瑶 +1 位作者 李储 何加亮 《吉林大学学报(理学版)》 北大核心 2025年第1期91-98,共8页
针对传统游戏智能体算法存在模型输入维度大及训练时间长的问题,提出一种结合状态信息转换与奖励函数塑形技术的新型深度强化学习游戏智能引导算法.首先,利用Unity引擎提供的接口直接读取游戏后台信息,以有效压缩状态空间的维度,减少输... 针对传统游戏智能体算法存在模型输入维度大及训练时间长的问题,提出一种结合状态信息转换与奖励函数塑形技术的新型深度强化学习游戏智能引导算法.首先,利用Unity引擎提供的接口直接读取游戏后台信息,以有效压缩状态空间的维度,减少输入数据量;其次,通过精细化设计奖励机制,加速模型的收敛过程;最后,从主观定性和客观定量两方面对该算法模型与现有方法进行对比实验,实验结果表明,该算法不仅显著提高了模型的训练效率,还大幅度提高了智能体的性能. 展开更多
关键词 深度强化学习 游戏智能体 奖励函数塑形 近端策略优化算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部