To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra...To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.展开更多
The ReaxFF can describe the properties of energetic materials(EMs)at equilibrium state,but does not work properly in simulating high-energy particle irradiation process because of its weak short-range interaction.In t...The ReaxFF can describe the properties of energetic materials(EMs)at equilibrium state,but does not work properly in simulating high-energy particle irradiation process because of its weak short-range interaction.In this paper,a modification was made for such a potential by connecting ZieglerBiersack-Littmark(ZBL)potential to ReaxFF-lg through comparing to Density Functional Theory(DFT)results to accurately describe short-range interactions.After modification,the newly fitted ReaxFF-lg/ZBL potential predicts better the equation of state for EMs In displacement cascade simulations,comparing to results from ab initio molecular dynamics(AIMD),ReaxFF-lg/ZBL presented the similar transferred energy from a primary knock-on atom to surrounding atoms,better than the original ReaxFF-lg potential.Further large-scale displacement cascade simulations indicated ReaxFF-lg/ZBL could be applied for cascade simulations with PKA energy from less than 1 keV to high energy(e.g.35 keV)cases,which is suitable for effectively simulating high-energy displacement cascades in EMs using molecular dynamics method.展开更多
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t...The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks.展开更多
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to...The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm.展开更多
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density opera...An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability.展开更多
A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subca...A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subcarrier allocation algorithm (DSAA) is proposed, to optimize the system model. The subcarrier allocation decision is made by the proposed DSAA according to the maximum value of total utility function with respect to the queue mean waiting time. Simulation results demonstrate that compared to the conventional algorithms, the proposed algorithm has better delay performance and can provide fairness under different loads by using different utility functions.展开更多
Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not...Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not as good as it was expected to be. Criticism of this algorithm includes the slow speed and premature result during convergence procedure. In order to improve the performance, the population size and individuals' space is emphatically described. The influence of individuals' space and population size on the operators is analyzed. And a novel family genetic algorithm (FGA) is put forward based on this analysis. In this novel algorithm, the optimum solution families closed to quality individuals is constructed, which is exchanged found by a search in the world space. Search will be done in this microspace. The family that can search better genes in a limited period of time would win a new life. At the same time, the best gene of this micro space with the basic population in the world space is exchanged. Finally, the FGA is applied to the function optimization and image matching through several experiments. The results show that the FGA possessed high performance.展开更多
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s...A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism.展开更多
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred...With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.展开更多
Carotenoid cleavage enzymes isolated from Japanese Camellia sinensis leaves(cultivar Yabukita) were used for investigating the structural patterns of carotenoid cleavage enzymes.Fresh tea leaves were used for the isol...Carotenoid cleavage enzymes isolated from Japanese Camellia sinensis leaves(cultivar Yabukita) were used for investigating the structural patterns of carotenoid cleavage enzymes.Fresh tea leaves were used for the isolation of active enzymes and purified to single band stage in SDS PAGE gels after isoelectric focusing.The specific activity of the carotenoid cleavage enzymes was tested and the active fractions selected for further analysis.The sugar content and the amount of phosphate present in the purified enzymes were elucidated by the following methods:Phosphates were detected by phosphatase assays,fluorescence marker kits and ammoniumheptamolybdate complex measurements after incineration of the samples.Sugars were detected in gels using PAS reagent(periodide acid /Schiff reagent) staining and by GC-MS after hydrolysation of the proteins with trifluoric acid.Phosphorylations as well as glycosylations of the samples could be detected in all cases,thus giving evidence for an increasing phosphorylation level of proteins in Camellia sinensis from spring(1.84 g/mg) to autumn(2.39 g/mg) as well as the presence of at least four different sugars(arabinose,xylose,galactose and ribose).These secondary modifications of the carotenoid cleavage enzymes and their dependency on the harvesting season may well correspond to the changes on the functional level which were detected between spring(Michaelis Constant(K m) =9.45 mol/l) and autumn(K m= 17.16 mol/l) harvests.展开更多
文摘To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.
基金the Natural Science Basic Research Program of Shaanxi(Grant No.2024JC-ZDXM-01)supported by the Youth Innovation Team of Shaanxi Universities(Title:Service Performance Evaluation of Energetic Materials)。
文摘The ReaxFF can describe the properties of energetic materials(EMs)at equilibrium state,but does not work properly in simulating high-energy particle irradiation process because of its weak short-range interaction.In this paper,a modification was made for such a potential by connecting ZieglerBiersack-Littmark(ZBL)potential to ReaxFF-lg through comparing to Density Functional Theory(DFT)results to accurately describe short-range interactions.After modification,the newly fitted ReaxFF-lg/ZBL potential predicts better the equation of state for EMs In displacement cascade simulations,comparing to results from ab initio molecular dynamics(AIMD),ReaxFF-lg/ZBL presented the similar transferred energy from a primary knock-on atom to surrounding atoms,better than the original ReaxFF-lg potential.Further large-scale displacement cascade simulations indicated ReaxFF-lg/ZBL could be applied for cascade simulations with PKA energy from less than 1 keV to high energy(e.g.35 keV)cases,which is suitable for effectively simulating high-energy displacement cascades in EMs using molecular dynamics method.
文摘The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks.
基金supported by the National Social Science Fund of China(2022-SKJJ-B-084).
文摘The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金the Research Fund for the Doctoral Program of Higher Education of China (20020008004).
文摘An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability.
文摘A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subcarrier allocation algorithm (DSAA) is proposed, to optimize the system model. The subcarrier allocation decision is made by the proposed DSAA according to the maximum value of total utility function with respect to the queue mean waiting time. Simulation results demonstrate that compared to the conventional algorithms, the proposed algorithm has better delay performance and can provide fairness under different loads by using different utility functions.
文摘Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not as good as it was expected to be. Criticism of this algorithm includes the slow speed and premature result during convergence procedure. In order to improve the performance, the population size and individuals' space is emphatically described. The influence of individuals' space and population size on the operators is analyzed. And a novel family genetic algorithm (FGA) is put forward based on this analysis. In this novel algorithm, the optimum solution families closed to quality individuals is constructed, which is exchanged found by a search in the world space. Search will be done in this microspace. The family that can search better genes in a limited period of time would win a new life. At the same time, the best gene of this micro space with the basic population in the world space is exchanged. Finally, the FGA is applied to the function optimization and image matching through several experiments. The results show that the FGA possessed high performance.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProjects(20040533035, 20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism.
基金supported by the National Science and Technology Innovation 2030 Next-Generation Artifical Intelligence Major Project(2018AAA0101801)the National Natural Science Foundation of China(72271188)。
文摘With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.
文摘Carotenoid cleavage enzymes isolated from Japanese Camellia sinensis leaves(cultivar Yabukita) were used for investigating the structural patterns of carotenoid cleavage enzymes.Fresh tea leaves were used for the isolation of active enzymes and purified to single band stage in SDS PAGE gels after isoelectric focusing.The specific activity of the carotenoid cleavage enzymes was tested and the active fractions selected for further analysis.The sugar content and the amount of phosphate present in the purified enzymes were elucidated by the following methods:Phosphates were detected by phosphatase assays,fluorescence marker kits and ammoniumheptamolybdate complex measurements after incineration of the samples.Sugars were detected in gels using PAS reagent(periodide acid /Schiff reagent) staining and by GC-MS after hydrolysation of the proteins with trifluoric acid.Phosphorylations as well as glycosylations of the samples could be detected in all cases,thus giving evidence for an increasing phosphorylation level of proteins in Camellia sinensis from spring(1.84 g/mg) to autumn(2.39 g/mg) as well as the presence of at least four different sugars(arabinose,xylose,galactose and ribose).These secondary modifications of the carotenoid cleavage enzymes and their dependency on the harvesting season may well correspond to the changes on the functional level which were detected between spring(Michaelis Constant(K m) =9.45 mol/l) and autumn(K m= 17.16 mol/l) harvests.