期刊文献+
共找到79,589篇文章
< 1 2 250 >
每页显示 20 50 100
Fusion Algorithm Based on Improved A^(*)and DWA for USV Path Planning
1
作者 Changyi Li Lei Yao Chao Mi 《哈尔滨工程大学学报(英文版)》 2025年第1期224-237,共14页
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh... The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs. 展开更多
关键词 Improved A^(*)algorithm Optimized DWA algorithm Unmanned surface vehicles Path planning Fusion algorithm
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
2
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
Retina algorithm for heavy-ion tracking in single-event effects localization
3
作者 Wen-Di Deng Jin-Chuan Wang +5 位作者 Hui-Peng Pan Wei Zhang Jian-Song Wang Fu-Qiang Wang Zi-Li Li Ren-Zhuo Wan 《Nuclear Science and Techniques》 2025年第6期123-135,共13页
This study presents a real-time tracking algorithm derived from the retina algorithm,designed for the rapid,real-time tracking of straight-line particle trajectories.These trajectories are detected by pixel detectors ... This study presents a real-time tracking algorithm derived from the retina algorithm,designed for the rapid,real-time tracking of straight-line particle trajectories.These trajectories are detected by pixel detectors to localize single-event effects in two-dimensional space.Initially,we developed a retina algorithm to track the trajectory of a single heavy ion and achieved a positional accuracy of 40μm.This was accomplished by analyzing trajectory samples from the simulations using a pixel sensor with a 72×72 pixel array and an 83μm pixel pitch.Subsequently,we refined this approach to create an iterative retina algorithm for tracking multiple heavy-ion trajectories in single events.This iterative version demonstrated a tracking efficiency of over 97%,with a positional resolution comparable to that of single-track events.Furthermore,it exhibits significant parallelism,requires fewer resources,and is ideally suited for implementation in field-programmable gate arrays on board-level systems,facilitating real-time online trajectory tracking. 展开更多
关键词 Single-event effects Retina algorithm Iterative retina algorithm Heavy ion Particle tracking
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
4
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal Optimization algorithm(GJOA) Improved Whale Optimization algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Calculation algorithm for the space charge force of a train with infinite bunches
5
作者 San-Hai Ren Hong-Yu Li +5 位作者 Jia-Ru Shi Hao Zha Wei-Hang Gu Qiang Gao Qian Tan Huai-Bi Chen 《Nuclear Science and Techniques》 2025年第6期13-25,共13页
Industrial linear accelerators often contain many bunches when their pulse widths are extended to microseconds.As they typically operate at low electron energies and high currents,the interactions among bunches cannot... Industrial linear accelerators often contain many bunches when their pulse widths are extended to microseconds.As they typically operate at low electron energies and high currents,the interactions among bunches cannot be neglected.In this study,an algorithm is introduced for calculating the space charge force of a train with infinite bunches.By utilizing the ring charge model and the particle-in-cell(PIC)method and combining analytical and numerical methods,the proposed algorithm efficiently calculates the space charge force of infinite bunches,enabling the accurate design of accelerator parameters and a comprehensive understanding of the space charge force.This is a significant improvement on existing simulation software such as ASTRA and PARMELA that can only handle a single bunch or a small number of bunches.The PIC algorithm is validated in long drift space transport by comparing it with existing models,such as the infinite-bunch,ASTRA single-bunch,and PARMELA several-bunch algorithms.The space charge force calculation results for the external acceleration field are also verified.The reliability of the proposed algorithm provides a foundation for the design and optimization of industrial accelerators. 展开更多
关键词 Particle-in-cell method Space charge force algorithm Infinite bunches
在线阅读 下载PDF
Research and Implementation of Trusted Blockchain Core Technology Based on State Secret Algorithm
6
作者 Zheng Qingan Meng Jialin +2 位作者 Wu Junjie Li Jingtao Lin Haonan 《China Communications》 2025年第4期143-160,共18页
With the rapid development of blockchain technology,the Chinese government has proposed that the commercial use of blockchain services in China should support the national encryption standard,also known as the state s... With the rapid development of blockchain technology,the Chinese government has proposed that the commercial use of blockchain services in China should support the national encryption standard,also known as the state secret algorithm GuoMi algorithm.The original Hyperledger Fabric only supports internationally common encryption algorithms,so it is particularly necessary to enhance support for the national encryption standard.Traditional identity authentication,access control,and security audit technologies have single-point failures,and data can be easily tampered with,leading to trust issues.To address these problems,this paper proposes an optimized and application research plan for Hyperledger Fabric.We study the optimization model of cryptographic components in Hyperledger Fabric,and based on Fabric's pluggable mechanism,we enhance the Fabric architecture with the national encryption standard.In addition,we research key technologies involved in the secure application protocol based on the blockchain.We propose a blockchain-based identity authentication protocol,detailing the design of an identity authentication scheme based on blockchain certificates and Fabric CA,and use a dual-signature method to further improve its security and reliability.Then,we propose a flexible,dynamically configurable real-time access control and security audit mechanism based on blockchain,further enhancing the security of the system. 展开更多
关键词 access control authentication Hyperledger Fabric security audit state secret algorithm
在线阅读 下载PDF
Ship Path Planning Based on Sparse A^(*)Algorithm
7
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 Sparse A^(*)algorithm Path planning RASTERIZATION Coordinate transformation Image preprocessing
在线阅读 下载PDF
Many-objective evolutionary algorithms based on reference-point-selection strategy for application in reactor radiation-shielding design
8
作者 Cheng-Wei Liu Ai-Kou Sun +4 位作者 Ji-Chong Lei Hong-Yu Qu Chao Yang Tao Yu Zhen-Ping Chen 《Nuclear Science and Techniques》 2025年第6期201-215,共15页
In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct... In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types. 展开更多
关键词 Many-objective optimization problem Evolutionary algorithm Radiation-shielding design Reference-point-selection strategy
在线阅读 下载PDF
DDoS Attack Tracking Using Multi-Round Iterative Viterbi Algorithm in Satellite Internet
9
作者 Guo Wei Xu Jin +2 位作者 Pei Yukui Yin Liuguo Feng Wei 《China Communications》 2025年第3期148-163,共16页
Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant ... Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI. 展开更多
关键词 DDoS tracking iterative Viterbi algorithm satellite Internet 6G
在线阅读 下载PDF
An improved fluid flow algorithm for hydraulic fracturing:Optimizing domain volume and crack pressure update strategies
10
作者 Wei Zhang Jing Bi +3 位作者 Yu Zhao Yongfa Zhang Chaolin Wang Yang Pan 《International Journal of Mining Science and Technology》 2025年第4期639-657,共19页
With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper propo... With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper proposes an improved fluid flow algorithm,aiming to enhance the computational efficiency of hydraulic fracturing simulations while ensuring computational accuracy.The algorithm optimizes the aperture law and iteration criteria,focusing on improving the domain volume and crack pressure update strategy,thereby enabling precise capture of dynamic borehole pressure variations during injection tests.The effectiveness of the algorithm is verified through three flow-solid coupling cases.The study also analyzes the effects of borehole size,domain volume,and crack pressure update strategy on fracturing behavior.Furthermore,the performance of the improved algorithm in terms of crack propagation rate,micro-crack formation,and fluid pressure distribution was further evaluated.The results indicate that while large-size boreholes delay crack initiation,the cracks propagate more rapidly once formed.Additionally,the optimized domain volume calculation and crack pressure update strategy significantly shorten the pressure propagation stage,promote crack propagation,and improve computational efficiency. 展开更多
关键词 Hydraulic fracturing Fluid flow algorithm Domain volume optimization Crack pressure update Borehole size
在线阅读 下载PDF
Altruistic Nurturing Algorithm for Multi-Objective Autonomous Underwater Vehicles Path Planning Problems
11
作者 Liu Min Chen Jianhong +4 位作者 Fan Xiaoping Ouyang Haibin Steven Li Zhang Chunliang Ding Weiping 《China Communications》 2025年第5期350-371,共22页
Solving the path planning problem of Autonomous Underwater Vehicles(AUVs)is crucial for reducing energy waste and improving operational efficiency.However,two main challenges hinder further development:Firstly,existin... Solving the path planning problem of Autonomous Underwater Vehicles(AUVs)is crucial for reducing energy waste and improving operational efficiency.However,two main challenges hinder further development:Firstly,existing algorithms often treat this as a single-objective optimization problem,whereas in reality,it should be multi-objective,considering factors such as distance,safety,and smoothness simultaneously.Secondly,the limited availability of optimization results arises due to they are single-path,which fail to meet real-world conditions.To address these challenges,first of all,an improved AUV path planning model is proposed,in which the collisions of path and obstacles are classified more specifically.Subsequently,a novel Altruistic Nurturing Algorithm(ANA)inspired by natural altruism is introduced.In the algorithm,nurturing cost considering Pareto rank and crowd distance is introduced as guidance of evolution to avoid futile calculation,abandonment threshold is self-adaptive with descendant situation to help individuals escape from local optima and double selection strategy combining crowd and k-nearest neighbors selection helps to get a better-distributed Pareto front.Experimental results comparing ANA with existing algorithms in AUV path planning demonstrate its superiority.Finally,a user-friendly interface,the Multi-Objective AUV Path Planner,is designed to provide users with a group of paths for informed decisionmaking. 展开更多
关键词 altruistic nurturing algorithm AUV path planning double selection strategy
在线阅读 下载PDF
A novel heuristic pathfinding algorithm for 3D security modeling and vulnerability assessment
12
作者 Jun Yang Yue-Ming Hong +2 位作者 Yu-Ming Lv Hao-Ming Ma Wen-Lin Wang 《Nuclear Science and Techniques》 2025年第5期152-166,共15页
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulner... Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications. 展开更多
关键词 Physical protection system 3D modeling and simulation Vulnerability assessment A^(*)Heuristic Pathfinding Dijkstra algorithm
在线阅读 下载PDF
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
13
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 Ultra-short-term wind power forecasting Wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
Hybrid Prairie Dog and Beluga Whale Optimization Algorithm for Multi-Objective Load Balanced-Task Scheduling in Cloud Computing Environments
14
作者 K Ramya Senthilselvi Ayothi 《China Communications》 SCIE CSCD 2024年第7期307-324,共18页
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr... The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time. 展开更多
关键词 Beluga Whale Optimization algorithm(BWOA) cloud computing Improved Hopcroft-Karp algorithm Infrastructure as a Service(IaaS) Prairie Dog Optimization algorithm(PDOA) Virtual Machine(VM)
在线阅读 下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:2
15
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
在线阅读 下载PDF
Hybrid Seagull and Whale Optimization Algorithm-Based Dynamic Clustering Protocol for Improving Network Longevity in Wireless Sensor Networks
16
作者 P.Vinoth Kumar K.Venkatesh 《China Communications》 SCIE CSCD 2024年第10期113-131,共19页
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess... Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test. 展开更多
关键词 CLUSTERING energy stability network lifetime seagull optimization algorithm(SEOA) whale optimization algorithm(WOA) wireless sensor networks(WSNs)
在线阅读 下载PDF
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
17
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 Adaptive Grasshopper Optimization algorithm(AGOA) Cluster Head(CH) network lifetime Teaching-Learning-based Optimization algorithm(TLOA) Wireless Sensor Networks(WSNs)
在线阅读 下载PDF
A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm 被引量:2
18
作者 Tie Yan Rui Xu +2 位作者 Shi-Hui Sun Zhao-Kai Hou Jin-Yu Feng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1135-1148,共14页
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ... Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation. 展开更多
关键词 Intelligent drilling Closed-loop drilling Lithology identification Random forest algorithm Feature extraction
在线阅读 下载PDF
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:1
19
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization Improved PSO algorithm
在线阅读 下载PDF
Enhancing XRF sensor-based sorting of porphyritic copper ore using particle swarm optimization-support vector machine(PSO-SVM)algorithm 被引量:1
20
作者 Zhengyu Liu Jue Kou +5 位作者 Zengxin Yan Peilong Wang Chang Liu Chunbao Sun Anlin Shao Bern Klein 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期545-556,共12页
X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi... X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms. 展开更多
关键词 XRF sensor-based sorting PSO-SVM algorithm Copper ore pebble Receiver operating curve(ROC) Net smelter return(NSR)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部